Home Metamath Proof ExplorerTheorem List (p. 109 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 10801-10900   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremdivreczi 10801 Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 11-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 ≠ 0 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))

Theoremdivcan3zi 10802 A cancellation law for division. (Eliminates a hypothesis of divcan3i 10809 with the weak deduction theorem.) (Contributed by NM, 3-Feb-2004.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 ≠ 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴)

Theoremdivcan4zi 10803 A cancellation law for division. (Contributed by NM, 12-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 ≠ 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴)

Theoremrec11i 10804 Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵))

Theoremdivcli 10805 Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 ≠ 0       (𝐴 / 𝐵) ∈ ℂ

Theoremdivcan2i 10806 A cancellation law for division. (Contributed by NM, 9-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 ≠ 0       (𝐵 · (𝐴 / 𝐵)) = 𝐴

Theoremdivcan1i 10807 A cancellation law for division. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 ≠ 0       ((𝐴 / 𝐵) · 𝐵) = 𝐴

Theoremdivreci 10808 Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 9-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 ≠ 0       (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))

Theoremdivcan3i 10809 A cancellation law for division. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 ≠ 0       ((𝐵 · 𝐴) / 𝐵) = 𝐴

Theoremdivcan4i 10810 A cancellation law for division. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 ≠ 0       ((𝐴 · 𝐵) / 𝐵) = 𝐴

Theoremdivne0i 10811 The ratio of nonzero numbers is nonzero. (Contributed by NM, 9-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 ≠ 0    &   𝐵 ≠ 0       (𝐴 / 𝐵) ≠ 0

Theoremrec11ii 10812 Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 ≠ 0    &   𝐵 ≠ 0       ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)

Theoremdivasszi 10813 An associative law for division. (Contributed by NM, 12-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐶 ≠ 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Theoremdivmulzi 10814 Relationship between division and multiplication. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐵 ≠ 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴))

Theoremdivdirzi 10815 Distribution of division over addition. (Contributed by NM, 31-Jul-2004.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐶 ≠ 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Theoremdivdiv23zi 10816 Swap denominators in a division. (Contributed by NM, 15-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐵 ≠ 0 ∧ 𝐶 ≠ 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵))

Theoremdivmuli 10817 Relationship between division and multiplication. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐵 ≠ 0       ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)

Theoremdivdiv32i 10818 Swap denominators in a division. (Contributed by NM, 15-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐵 ≠ 0    &   𝐶 ≠ 0       ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)

Theoremdivassi 10819 An associative law for division. (Contributed by NM, 15-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 ≠ 0       ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))

Theoremdivdiri 10820 Distribution of division over addition. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 ≠ 0       ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))

Theoremdiv23i 10821 A commutative/associative law for division. (Contributed by NM, 3-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 ≠ 0       ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)

Theoremdiv11i 10822 One-to-one relationship for division. (Contributed by NM, 20-Aug-2001.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 ≠ 0       ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)

Theoremdivmuldivi 10823 Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 ≠ 0    &   𝐷 ≠ 0       ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))

Theoremdivmul13i 10824 Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 ≠ 0    &   𝐷 ≠ 0       ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷))

Theoremdivadddivi 10825 Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 21-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 ≠ 0    &   𝐷 ≠ 0       ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))

Theoremdivdivdivi 10826 Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 22-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 ≠ 0    &   𝐷 ≠ 0    &   𝐶 ≠ 0       ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))

Theoremrerecclzi 10827 Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
𝐴 ∈ ℝ       (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℝ)

Theoremrereccli 10828 Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
𝐴 ∈ ℝ    &   𝐴 ≠ 0       (1 / 𝐴) ∈ ℝ

Theoremredivclzi 10829 Closure law for division of reals. (Contributed by NM, 9-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℝ)

Theoremredivcli 10830 Closure law for division of reals. (Contributed by NM, 9-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐵 ≠ 0       (𝐴 / 𝐵) ∈ ℝ

Theoremdiv1d 10831 A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 / 1) = 𝐴)

Theoremreccld 10832 Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (1 / 𝐴) ∈ ℂ)

Theoremrecne0d 10833 The reciprocal of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (1 / 𝐴) ≠ 0)

Theoremrecidd 10834 Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (𝐴 · (1 / 𝐴)) = 1)

Theoremrecid2d 10835 Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → ((1 / 𝐴) · 𝐴) = 1)

Theoremrecrecd 10836 A number is equal to the reciprocal of its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (1 / (1 / 𝐴)) = 𝐴)

Theoremdividd 10837 A number divided by itself is one. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (𝐴 / 𝐴) = 1)

Theoremdiv0d 10838 Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (0 / 𝐴) = 0)

Theoremdivcld 10839 Closure law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℂ)

Theoremdivcan1d 10840 A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴)

Theoremdivcan2d 10841 A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴)

Theoremdivrecd 10842 Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))

Theoremdivrec2d 10843 Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))

Theoremdivcan3d 10844 A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴)

Theoremdivcan4d 10845 A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴)

Theoremdiveq0d 10846 A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑 → (𝐴 / 𝐵) = 0)       (𝜑𝐴 = 0)

Theoremdiveq1d 10847 Equality in terms of unit ratio. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑 → (𝐴 / 𝐵) = 1)       (𝜑𝐴 = 𝐵)

Theoremdiveq1ad 10848 The quotient of two complex numbers is one iff they are equal. Deduction form of diveq1 10756. Generalization of diveq1d 10847. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))

Theoremdiveq0ad 10849 A fraction of complex numbers is zero iff its numerator is. Deduction form of diveq0 10733. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0))

Theoremdivne1d 10850 If two complex numbers are unequal, their quotient is not one. Contrapositive of diveq1d 10847. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 / 𝐵) ≠ 1)

Theoremdivne0bd 10851 A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 ≠ 0 ↔ (𝐴 / 𝐵) ≠ 0))

Theoremdivnegd 10852 Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))

Theoremdivneg2d 10853 Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵))

Theoremdiv2negd 10854 Quotient of two negatives. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵))

Theoremdivne0d 10855 The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) ≠ 0)

Theoremrecdivd 10856 The reciprocal of a ratio. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))

Theoremrecdiv2d 10857 Division into a reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵)))

Theoremdivcan6d 10858 Cancellation of inverted fractions. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1)

Theoremddcand 10859 Cancellation in a double division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵)

Theoremrec11d 10860 Reciprocal is one-to-one. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)    &   (𝜑 → (1 / 𝐴) = (1 / 𝐵))       (𝜑𝐴 = 𝐵)

Theoremdivmuld 10861 Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴))

Theoremdiv32d 10862 A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵)))

Theoremdiv13d 10863 A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))

Theoremdivdiv32d 10864 Swap denominators in a division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵))

Theoremdivcan5d 10865 Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))

Theoremdivcan5rd 10866 Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵))

Theoremdivcan7d 10867 Cancel equal divisors in a division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵))

Theoremdmdcand 10868 Cancellation law for division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶))

Theoremdmdcan2d 10869 Cancellation law for division and multiplication. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶))

Theoremdivdiv1d 10870 Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Theoremdivdiv2d 10871 Division by a fraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))

Theoremdivmul2d 10872 Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐶 · 𝐵)))

Theoremdivmul3d 10873 Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐵 · 𝐶)))

Theoremdivassd 10874 An associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Theoremdiv12d 10875 A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))

Theoremdiv23d 10876 A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))

Theoremdivdird 10877 Distribution of division over addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Theoremdivsubdird 10878 Distribution of division over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))

Theoremdiv11d 10879 One-to-one relationship for division. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)    &   (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))       (𝜑𝐴 = 𝐵)

Theoremdivmuldivd 10880 Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))

Theoremdivmul13d 10881 Swap denominators of two ratios. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)))

Theoremdivmul24d 10882 Swap the numerators in the product of two ratios. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 / 𝐷) · (𝐶 / 𝐵)))

Theoremdivadddivd 10883 Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)))

Theoremdivsubdivd 10884 Subtraction of two ratios. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) − (𝐶 / 𝐷)) = (((𝐴 · 𝐷) − (𝐶 · 𝐵)) / (𝐵 · 𝐷)))

Theoremdivmuleqd 10885 Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐶 · 𝐵)))

Theoremdivdivdivd 10886 Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐷 ≠ 0)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))

Theoremdiveq1bd 10887 If two complex numbers are equal, their quotient is one. One-way deduction form of diveq1 10756. Converse of diveq1d 10847. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 / 𝐵) = 1)

Theoremdiv2sub 10888 Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Theoremdiv2subd 10889 Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2sub 10888. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐶𝐷)       (𝜑 → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Theoremrereccld 10890 Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (1 / 𝐴) ∈ ℝ)

Theoremredivcld 10891 Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)

Theoremsubrec 10892 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵)))

Theoremsubreci 10893 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 ≠ 0    &   𝐵 ≠ 0       ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵))

Theoremsubrecd 10894 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)       (𝜑 → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵)))

Theoremmvllmuld 10895 Move LHS left multiplication to RHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑 → (𝐴 · 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 / 𝐴))

Theoremmvllmuli 10896 Move LHS left multiplication to RHS. Uses divcan4i 10810. (Contributed by David A. Wheeler, 11-Oct-2018.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 ≠ 0    &   (𝐴 · 𝐵) = 𝐶       𝐵 = (𝐶 / 𝐴)

5.3.7  Ordering on reals (cont.)

Theoremelimgt0 10897 Hypothesis for weak deduction theorem to eliminate 0 < 𝐴. (Contributed by NM, 15-May-1999.)
0 < if(0 < 𝐴, 𝐴, 1)

Theoremelimge0 10898 Hypothesis for weak deduction theorem to eliminate 0 ≤ 𝐴. (Contributed by NM, 30-Jul-1999.)
0 ≤ if(0 ≤ 𝐴, 𝐴, 0)

Theoremltp1 10899 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))

Theoremlep1 10900 A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
(𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >