![]() |
Metamath
Proof Explorer Theorem List (p. 106 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | subdi 10501 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) | ||
Theorem | subdir 10502 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | ||
Theorem | ine0 10503 | The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
⊢ i ≠ 0 | ||
Theorem | mulneg1 10504 | Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | ||
Theorem | mulneg2 10505 | The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | ||
Theorem | mulneg12 10506 | Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵)) | ||
Theorem | mul2neg 10507 | Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) | ||
Theorem | submul2 10508 | Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶))) | ||
Theorem | mulm1 10509 | Product with minus one is negative. (Contributed by NM, 16-Nov-1999.) |
⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | ||
Theorem | addneg1mul 10510 | Addition with product with minus one is a subtraction. (Contributed by AV, 18-Oct-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (-1 · 𝐵)) = (𝐴 − 𝐵)) | ||
Theorem | mulsub 10511 | Product of two differences. (Contributed by NM, 14-Jan-2006.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
Theorem | mulsub2 10512 | Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = ((𝐵 − 𝐴) · (𝐷 − 𝐶))) | ||
Theorem | mulm1i 10513 | Product with minus one is negative. (Contributed by NM, 31-Jul-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-1 · 𝐴) = -𝐴 | ||
Theorem | mulneg1i 10514 | Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) | ||
Theorem | mulneg2i 10515 | Product with negative is negative of product. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · -𝐵) = -(𝐴 · 𝐵) | ||
Theorem | mul2negi 10516 | Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 · -𝐵) = (𝐴 · 𝐵) | ||
Theorem | subdii 10517 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)) | ||
Theorem | subdiri 10518 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 8-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) | ||
Theorem | muladdi 10519 | Product of two sums. (Contributed by NM, 17-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) | ||
Theorem | mulm1d 10520 | Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) | ||
Theorem | mulneg1d 10521 | Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | ||
Theorem | mulneg2d 10522 | Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | ||
Theorem | mul2negd 10523 | Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) | ||
Theorem | subdid 10524 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) | ||
Theorem | subdird 10525 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | ||
Theorem | subdir2d 10526 | Distribution of multiplication over subtraction. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 · (𝐴 − 𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵))) | ||
Theorem | muladdd 10527 | Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
Theorem | mulsubd 10528 | Product of two differences. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
Theorem | muls1d 10529 | Multiplication by one minus a number. (Contributed by Scott Fenton, 23-Dec-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 1)) = ((𝐴 · 𝐵) − 𝐴)) | ||
Theorem | mulsubfacd 10530 | Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) | ||
Theorem | gt0ne0 10531 | Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | ||
Theorem | lt0ne0 10532 | A number which is less than zero is not zero. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ≠ 0) | ||
Theorem | ltadd1 10533 | Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) | ||
Theorem | leadd1 10534 | Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))) | ||
Theorem | leadd2 10535 | Addition to both sides of 'less than or equal to'. (Contributed by NM, 26-Oct-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) | ||
Theorem | ltsubadd 10536 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) | ||
Theorem | ltsubadd2 10537 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
Theorem | lesubadd 10538 | 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | ||
Theorem | lesubadd2 10539 | 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) | ||
Theorem | ltaddsub 10540 | 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) | ||
Theorem | ltaddsub2 10541 | 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) | ||
Theorem | leaddsub 10542 | 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) | ||
Theorem | leaddsub2 10543 | 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) | ||
Theorem | suble 10544 | Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ (𝐴 − 𝐶) ≤ 𝐵)) | ||
Theorem | lesub 10545 | Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ (𝐵 − 𝐶) ↔ 𝐶 ≤ (𝐵 − 𝐴))) | ||
Theorem | ltsub23 10546 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ (𝐴 − 𝐶) < 𝐵)) | ||
Theorem | ltsub13 10547 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐵 − 𝐶) ↔ 𝐶 < (𝐵 − 𝐴))) | ||
Theorem | le2add 10548 | Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | ||
Theorem | ltleadd 10549 | Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | ||
Theorem | leltadd 10550 | Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | ||
Theorem | lt2add 10551 | Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | ||
Theorem | addgt0 10552 | The sum of 2 positive numbers is positive. (Contributed by NM, 1-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) | ||
Theorem | addgegt0 10553 | The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) | ||
Theorem | addgtge0 10554 | The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) | ||
Theorem | addge0 10555 | The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | ||
Theorem | ltaddpos 10556 | Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
Theorem | ltaddpos2 10557 | Adding a positive number to another number increases it. (Contributed by NM, 8-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐴 + 𝐵))) | ||
Theorem | ltsubpos 10558 | Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) | ||
Theorem | posdif 10559 | Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | ||
Theorem | lesub1 10560 | Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) | ||
Theorem | lesub2 10561 | Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) | ||
Theorem | ltsub1 10562 | Subtraction from both sides of 'less than'. (Contributed by FL, 3-Jan-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) | ||
Theorem | ltsub2 10563 | Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) | ||
Theorem | lt2sub 10564 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐷 < 𝐵) → (𝐴 − 𝐵) < (𝐶 − 𝐷))) | ||
Theorem | le2sub 10565 | Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) | ||
Theorem | ltneg 10566 | Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) | ||
Theorem | ltnegcon1 10567 | Contraposition of negative in 'less than'. (Contributed by NM, 8-Nov-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)) | ||
Theorem | ltnegcon2 10568 | Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -𝐵 ↔ 𝐵 < -𝐴)) | ||
Theorem | leneg 10569 | Negative of both sides of 'less than or equal to'. (Contributed by NM, 12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) | ||
Theorem | lenegcon1 10570 | Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) | ||
Theorem | lenegcon2 10571 | Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵 ↔ 𝐵 ≤ -𝐴)) | ||
Theorem | lt0neg1 10572 | Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | ||
Theorem | lt0neg2 10573 | Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.) |
⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0)) | ||
Theorem | le0neg1 10574 | Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.) |
⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | ||
Theorem | le0neg2 10575 | Comparison of a number and its negative to zero. (Contributed by NM, 24-Aug-1999.) |
⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | ||
Theorem | addge01 10576 | A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | ||
Theorem | addge02 10577 | A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 27-Jul-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) | ||
Theorem | add20 10578 | Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | ||
Theorem | subge0 10579 | Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | suble0 10580 | Nonpositive subtraction. (Contributed by NM, 20-Mar-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | ||
Theorem | leaddle0 10581 | The sum of a real number and a second real number is less than the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴 ↔ 𝐵 ≤ 0)) | ||
Theorem | subge02 10582 | Nonnegative subtraction. (Contributed by NM, 27-Jul-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 − 𝐵) ≤ 𝐴)) | ||
Theorem | lesub0 10583 | Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0)) | ||
Theorem | mulge0 10584 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mullt0 10585 | The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵)) | ||
Theorem | msqgt0 10586 | A nonzero square is positive. Theorem I.20 of [Apostol] p. 20. (Contributed by NM, 6-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) | ||
Theorem | msqge0 10587 | A square is nonnegative. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | 0lt1 10588 | 0 is less than 1. Theorem I.21 of [Apostol] p. 20. (Contributed by NM, 17-Jan-1997.) |
⊢ 0 < 1 | ||
Theorem | 0le1 10589 | 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ 0 ≤ 1 | ||
Theorem | relin01 10590 | An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013.) |
⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ∨ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∨ 1 ≤ 𝐴)) | ||
Theorem | ltordlem 10591* | Lemma for ltord1 10592. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) | ||
Theorem | ltord1 10592* | Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 ↔ 𝑀 < 𝑁)) | ||
Theorem | leord1 10593* | Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ 𝑀 ≤ 𝑁)) | ||
Theorem | eqord1 10594* | Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) | ||
Theorem | ltord2 10595* | Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 ↔ 𝑁 < 𝑀)) | ||
Theorem | leord2 10596* | Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ 𝑁 ≤ 𝑀)) | ||
Theorem | eqord2 10597* | Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) & ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) & ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) | ||
Theorem | wloglei 10598* | Form of wlogle 10599 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑆 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜃) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) | ||
Theorem | wlogle 10599* | If the predicate 𝜒(𝑥, 𝑦) is symmetric under interchange of 𝑥, 𝑦, then "without loss of generality" we can assume that 𝑥 ≤ 𝑦. (Contributed by Mario Carneiro, 18-Aug-2014.) (Revised by Mario Carneiro, 11-Sep-2014.) |
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑆 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) | ||
Theorem | leidi 10600 | 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ≤ 𝐴 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |