Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirval Structured version   Visualization version   GIF version

Theorem mirval 25770
 Description: Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
Assertion
Ref Expression
mirval (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐺,𝑧   𝑦,𝐼,𝑧   𝑦,𝑃,𝑧   𝜑,𝑦,𝑧   𝑦, ,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝐿(𝑦,𝑧)

Proof of Theorem mirval
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
2 df-mir 25768 . . . . 5 pInvG = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))))
32a1i 11 . . . 4 (𝜑 → pInvG = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))))))
4 fveq2 6332 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
5 mirval.p . . . . . . 7 𝑃 = (Base‘𝐺)
64, 5syl6eqr 2822 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
7 fveq2 6332 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
8 mirval.d . . . . . . . . . . . 12 = (dist‘𝐺)
97, 8syl6eqr 2822 . . . . . . . . . . 11 (𝑔 = 𝐺 → (dist‘𝑔) = )
109oveqd 6809 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑧) = (𝑥 𝑧))
119oveqd 6809 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(dist‘𝑔)𝑦) = (𝑥 𝑦))
1210, 11eqeq12d 2785 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ↔ (𝑥 𝑧) = (𝑥 𝑦)))
13 fveq2 6332 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
14 mirval.i . . . . . . . . . . . 12 𝐼 = (Itv‘𝐺)
1513, 14syl6eqr 2822 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
1615oveqd 6809 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑧(Itv‘𝑔)𝑦) = (𝑧𝐼𝑦))
1716eleq2d 2835 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥 ∈ (𝑧(Itv‘𝑔)𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦)))
1812, 17anbi12d 608 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)) ↔ ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
196, 18riotaeqbidv 6756 . . . . . . 7 (𝑔 = 𝐺 → (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))) = (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))
206, 19mpteq12dv 4865 . . . . . 6 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))))
216, 20mpteq12dv 4865 . . . . 5 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
2221adantl 467 . . . 4 ((𝜑𝑔 = 𝐺) → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔) ↦ (𝑧 ∈ (Base‘𝑔)((𝑥(dist‘𝑔)𝑧) = (𝑥(dist‘𝑔)𝑦) ∧ 𝑥 ∈ (𝑧(Itv‘𝑔)𝑦))))) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
23 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
24 elex 3361 . . . . 5 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
2523, 24syl 17 . . . 4 (𝜑𝐺 ∈ V)
26 fvex 6342 . . . . . . 7 (Base‘𝐺) ∈ V
275, 26eqeltri 2845 . . . . . 6 𝑃 ∈ V
2827mptex 6629 . . . . 5 (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V
2928a1i 11 . . . 4 (𝜑 → (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))) ∈ V)
303, 22, 25, 29fvmptd 6430 . . 3 (𝜑 → (pInvG‘𝐺) = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
311, 30syl5eq 2816 . 2 (𝜑𝑆 = (𝑥𝑃 ↦ (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))))))
32 simpll 742 . . . . . . . 8 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → 𝑥 = 𝐴)
3332oveq1d 6807 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑧) = (𝐴 𝑧))
3432oveq1d 6807 . . . . . . 7 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑦) = (𝐴 𝑦))
3533, 34eqeq12d 2785 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → ((𝑥 𝑧) = (𝑥 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝑦)))
3632eleq1d 2834 . . . . . 6 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝑦)))
3735, 36anbi12d 608 . . . . 5 (((𝑥 = 𝐴𝑦𝑃) ∧ 𝑧𝑃) → (((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3837riotabidva 6769 . . . 4 ((𝑥 = 𝐴𝑦𝑃) → (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))
3938mpteq2dva 4876 . . 3 (𝑥 = 𝐴 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
4039adantl 467 . 2 ((𝜑𝑥 = 𝐴) → (𝑦𝑃 ↦ (𝑧𝑃 ((𝑥 𝑧) = (𝑥 𝑦) ∧ 𝑥 ∈ (𝑧𝐼𝑦)))) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
41 mirval.a . 2 (𝜑𝐴𝑃)
4227mptex 6629 . . 3 (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V
4342a1i 11 . 2 (𝜑 → (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))) ∈ V)
4431, 40, 41, 43fvmptd 6430 1 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ↦ cmpt 4861  ‘cfv 6031  ℩crio 6752  (class class class)co 6792  Basecbs 16063  distcds 16157  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  pInvGcmir 25767 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-mir 25768 This theorem is referenced by:  mirfv  25771  mirf  25775
 Copyright terms: Public domain W3C validator