![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mircom | Structured version Visualization version GIF version |
Description: Variation on mirmir 25778. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mircom.1 | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) |
Ref | Expression |
---|---|
mircom | ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mircom.1 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) | |
2 | 1 | fveq2d 6337 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = (𝑀‘𝐶)) |
3 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
11 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | mirmir 25778 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
13 | 2, 12 | eqtr3d 2807 | 1 ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 LineGclng 25557 pInvGcmir 25768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 df-mir 25769 |
This theorem is referenced by: miduniq 25801 colperpexlem3 25845 mideulem2 25847 midex 25850 opphllem1 25860 opphllem2 25861 opphllem3 25862 opphllem5 25864 opphllem6 25865 trgcopyeulem 25918 |
Copyright terms: Public domain | W3C validator |