MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircom Structured version   Visualization version   GIF version

Theorem mircom 25779
Description: Variation on mirmir 25778. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mircom.1 (𝜑 → (𝑀𝐵) = 𝐶)
Assertion
Ref Expression
mircom (𝜑 → (𝑀𝐶) = 𝐵)

Proof of Theorem mircom
StepHypRef Expression
1 mircom.1 . . 3 (𝜑 → (𝑀𝐵) = 𝐶)
21fveq2d 6337 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = (𝑀𝐶))
3 mirval.p . . 3 𝑃 = (Base‘𝐺)
4 mirval.d . . 3 = (dist‘𝐺)
5 mirval.i . . 3 𝐼 = (Itv‘𝐺)
6 mirval.l . . 3 𝐿 = (LineG‘𝐺)
7 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
8 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . 3 (𝜑𝐴𝑃)
10 mirfv.m . . 3 𝑀 = (𝑆𝐴)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 25778 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
132, 12eqtr3d 2807 1 (𝜑 → (𝑀𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6030  Basecbs 16064  distcds 16158  TarskiGcstrkg 25550  Itvcitv 25556  LineGclng 25557  pInvGcmir 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-trkgc 25568  df-trkgb 25569  df-trkgcb 25570  df-trkg 25573  df-mir 25769
This theorem is referenced by:  miduniq  25801  colperpexlem3  25845  mideulem2  25847  midex  25850  opphllem1  25860  opphllem2  25861  opphllem3  25862  opphllem5  25864  opphllem6  25865  trgcopyeulem  25918
  Copyright terms: Public domain W3C validator