MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircl Structured version   Visualization version   GIF version

Theorem mircl 25776
Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mircl.x (𝜑𝑋𝑃)
Assertion
Ref Expression
mircl (𝜑 → (𝑀𝑋) ∈ 𝑃)

Proof of Theorem mircl
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
91, 2, 3, 4, 5, 6, 7, 8mirf 25775 . 2 (𝜑𝑀:𝑃𝑃)
10 mircl.x . 2 (𝜑𝑋𝑃)
119, 10ffvelrnd 6503 1 (𝜑 → (𝑀𝑋) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  cfv 6031  Basecbs 16063  distcds 16157  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  pInvGcmir 25767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkg 25572  df-mir 25768
This theorem is referenced by:  mirmir  25777  mirreu  25779  mireq  25780  miriso  25785  mirmir2  25789  mirln  25791  mirconn  25793  mirhl  25794  mirbtwnhl  25795  mirhl2  25796  mircgrextend  25797  mirtrcgr  25798  miduniq  25800  miduniq1  25801  miduniq2  25802  ragcom  25813  ragcol  25814  ragmir  25815  mirrag  25816  ragflat2  25818  ragflat  25819  ragcgr  25822  footex  25833  colperpexlem1  25842  colperpexlem3  25844  mideulem2  25846  opphllem  25847  opphllem2  25860  opphllem3  25861  opphllem4  25862  opphllem6  25864  opphl  25866  colhp  25882  mirmid  25895  lmieu  25896  lmimid  25906  lmiisolem  25908  hypcgrlem1  25911  hypcgrlem2  25912  hypcgr  25913  sacgr  25942
  Copyright terms: Public domain W3C validator