![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mircl | Structured version Visualization version GIF version |
Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mircl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Ref | Expression |
---|---|
mircl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 25775 | . 2 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
10 | mircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
11 | 9, 10 | ffvelrnd 6503 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 Basecbs 16063 distcds 16157 TarskiGcstrkg 25549 Itvcitv 25555 LineGclng 25556 pInvGcmir 25767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-trkgc 25567 df-trkgb 25568 df-trkgcb 25569 df-trkg 25572 df-mir 25768 |
This theorem is referenced by: mirmir 25777 mirreu 25779 mireq 25780 miriso 25785 mirmir2 25789 mirln 25791 mirconn 25793 mirhl 25794 mirbtwnhl 25795 mirhl2 25796 mircgrextend 25797 mirtrcgr 25798 miduniq 25800 miduniq1 25801 miduniq2 25802 ragcom 25813 ragcol 25814 ragmir 25815 mirrag 25816 ragflat2 25818 ragflat 25819 ragcgr 25822 footex 25833 colperpexlem1 25842 colperpexlem3 25844 mideulem2 25846 opphllem 25847 opphllem2 25860 opphllem3 25861 opphllem4 25862 opphllem6 25864 opphl 25866 colhp 25882 mirmid 25895 lmieu 25896 lmimid 25906 lmiisolem 25908 hypcgrlem1 25911 hypcgrlem2 25912 hypcgr 25913 sacgr 25942 |
Copyright terms: Public domain | W3C validator |