MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwnhl Structured version   Visualization version   GIF version

Theorem mirbtwnhl 25620
Description: If the center of the point inversion 𝐴 is between two points 𝑋 and 𝑌, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirhl.m 𝑀 = (𝑆𝐴)
mirhl.k 𝐾 = (hlG‘𝐺)
mirhl.a (𝜑𝐴𝑃)
mirhl.x (𝜑𝑋𝑃)
mirhl.y (𝜑𝑌𝑃)
mirhl.z (𝜑𝑍𝑃)
mirbtwnhl.1 (𝜑𝑋𝐴)
mirbtwnhl.2 (𝜑𝑌𝐴)
mirbtwnhl.3 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
mirbtwnhl (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))

Proof of Theorem mirbtwnhl
StepHypRef Expression
1 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 mirhl.k . . . . . 6 𝐾 = (hlG‘𝐺)
4 mirhl.a . . . . . 6 (𝜑𝐴𝑃)
5 mirhl.x . . . . . 6 (𝜑𝑋𝑃)
6 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
71, 2, 3, 4, 5, 4, 6hleqnid 25548 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑋)
87adantr 480 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑋)
9 simpr 476 . . . . 5 ((𝜑𝑍 = 𝐴) → 𝑍 = 𝐴)
109breq1d 4695 . . . 4 ((𝜑𝑍 = 𝐴) → (𝑍(𝐾𝐴)𝑋𝐴(𝐾𝐴)𝑋))
118, 10mtbird 314 . . 3 ((𝜑𝑍 = 𝐴) → ¬ 𝑍(𝐾𝐴)𝑋)
12 mirhl.y . . . . . 6 (𝜑𝑌𝑃)
131, 2, 3, 4, 12, 4, 6hleqnid 25548 . . . . 5 (𝜑 → ¬ 𝐴(𝐾𝐴)𝑌)
1413adantr 480 . . . 4 ((𝜑𝑍 = 𝐴) → ¬ 𝐴(𝐾𝐴)𝑌)
159fveq2d 6233 . . . . . 6 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
16 mirval.d . . . . . . . 8 = (dist‘𝐺)
17 mirval.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
18 mirval.s . . . . . . . 8 𝑆 = (pInvG‘𝐺)
19 mirhl.m . . . . . . . 8 𝑀 = (𝑆𝐴)
201, 16, 2, 17, 18, 6, 4, 19mircinv 25608 . . . . . . 7 (𝜑 → (𝑀𝐴) = 𝐴)
2120adantr 480 . . . . . 6 ((𝜑𝑍 = 𝐴) → (𝑀𝐴) = 𝐴)
2215, 21eqtrd 2685 . . . . 5 ((𝜑𝑍 = 𝐴) → (𝑀𝑍) = 𝐴)
2322breq1d 4695 . . . 4 ((𝜑𝑍 = 𝐴) → ((𝑀𝑍)(𝐾𝐴)𝑌𝐴(𝐾𝐴)𝑌))
2414, 23mtbird 314 . . 3 ((𝜑𝑍 = 𝐴) → ¬ (𝑀𝑍)(𝐾𝐴)𝑌)
2511, 242falsed 365 . 2 ((𝜑𝑍 = 𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
26 simplr 807 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝐴)
2726neneqd 2828 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ 𝑍 = 𝐴)
286ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐺 ∈ TarskiG)
294ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝐴𝑃)
30 mirhl.z . . . . . . . . 9 (𝜑𝑍𝑃)
3130ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍𝑃)
32 simpr 476 . . . . . . . . 9 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = 𝐴)
3320ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝐴) = 𝐴)
3432, 33eqtr4d 2688 . . . . . . . 8 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → (𝑀𝑍) = (𝑀𝐴))
351, 16, 2, 17, 18, 28, 29, 19, 31, 29, 34mireq 25605 . . . . . . 7 ((((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) ∧ (𝑀𝑍) = 𝐴) → 𝑍 = 𝐴)
3627, 35mtand 692 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ¬ (𝑀𝑍) = 𝐴)
3736neqned 2830 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ≠ 𝐴)
38 mirbtwnhl.2 . . . . . 6 (𝜑𝑌𝐴)
3938ad2antrr 762 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝐴)
406ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐺 ∈ TarskiG)
415ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝑃)
424ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴𝑃)
431, 16, 2, 17, 18, 6, 4, 19, 30mircl 25601 . . . . . . 7 (𝜑 → (𝑀𝑍) ∈ 𝑃)
4443ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍) ∈ 𝑃)
4512ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑌𝑃)
46 mirbtwnhl.1 . . . . . . 7 (𝜑𝑋𝐴)
4746ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑋𝐴)
4830ad2antrr 762 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝑍𝑃)
491, 2, 3, 30, 5, 4, 6ishlg 25542 . . . . . . . . . . 11 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
5049adantr 480 . . . . . . . . . 10 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
5150biimpa 500 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))
5251simp3d 1095 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
5352orcomd 402 . . . . . . 7 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑋 ∈ (𝐴𝐼𝑍) ∨ 𝑍 ∈ (𝐴𝐼𝑋)))
541, 16, 2, 17, 18, 40, 19, 42, 41, 48, 53mirconn 25618 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼(𝑀𝑍)))
55 mirbtwnhl.3 . . . . . . 7 (𝜑𝐴 ∈ (𝑋𝐼𝑌))
5655ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → 𝐴 ∈ (𝑋𝐼𝑌))
571, 2, 40, 41, 42, 44, 45, 47, 54, 56tgbtwnconn2 25516 . . . . 5 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
5837, 39, 573jca 1261 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍)))))
591, 2, 3, 43, 12, 4, 6ishlg 25542 . . . . . 6 (𝜑 → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
6059adantr 480 . . . . 5 ((𝜑𝑍𝐴) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
6160adantr 480 . . . 4 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → ((𝑀𝑍)(𝐾𝐴)𝑌 ↔ ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))))
6258, 61mpbird 247 . . 3 (((𝜑𝑍𝐴) ∧ 𝑍(𝐾𝐴)𝑋) → (𝑀𝑍)(𝐾𝐴)𝑌)
63 simplr 807 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝐴)
6446ad2antrr 762 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝐴)
656ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐺 ∈ TarskiG)
6612ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝑃)
674ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴𝑃)
6830ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍𝑃)
695ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑋𝑃)
7038ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑌𝐴)
7120ad2antrr 762 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) = 𝐴)
7243ad2antrr 762 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑍) ∈ 𝑃)
731, 16, 2, 17, 18, 65, 67, 19, 66mircl 25601 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝑌) ∈ 𝑃)
7460biimpa 500 . . . . . . . . . . 11 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ≠ 𝐴𝑌𝐴 ∧ ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍)))))
7574simp3d 1095 . . . . . . . . . 10 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → ((𝑀𝑍) ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼(𝑀𝑍))))
761, 16, 2, 17, 18, 65, 19, 67, 72, 66, 75mirconn 25618 . . . . . . . . 9 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑍)𝐼(𝑀𝑌)))
771, 16, 2, 65, 72, 67, 73, 76tgbtwncom 25428 . . . . . . . 8 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
7871, 77eqeltrd 2730 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍)))
791, 16, 2, 17, 18, 65, 67, 19, 66, 67, 68mirbtwnb 25612 . . . . . . 7 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝐴 ∈ (𝑌𝐼𝑍) ↔ (𝑀𝐴) ∈ ((𝑀𝑌)𝐼(𝑀𝑍))))
8078, 79mpbird 247 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑍))
811, 16, 2, 6, 5, 4, 12, 55tgbtwncom 25428 . . . . . . 7 (𝜑𝐴 ∈ (𝑌𝐼𝑋))
8281ad2antrr 762 . . . . . 6 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝐴 ∈ (𝑌𝐼𝑋))
831, 2, 65, 66, 67, 68, 69, 70, 80, 82tgbtwnconn2 25516 . . . . 5 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))
8463, 64, 833jca 1261 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍))))
8550adantr 480 . . . 4 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑍𝐴𝑋𝐴 ∧ (𝑍 ∈ (𝐴𝐼𝑋) ∨ 𝑋 ∈ (𝐴𝐼𝑍)))))
8684, 85mpbird 247 . . 3 (((𝜑𝑍𝐴) ∧ (𝑀𝑍)(𝐾𝐴)𝑌) → 𝑍(𝐾𝐴)𝑋)
8762, 86impbida 895 . 2 ((𝜑𝑍𝐴) → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
8825, 87pm2.61dane 2910 1 (𝜑 → (𝑍(𝐾𝐴)𝑋 ↔ (𝑀𝑍)(𝐾𝐴)𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  hlGchlg 25540  pInvGcmir 25592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397  df-cgrg 25451  df-hlg 25541  df-mir 25593
This theorem is referenced by:  opphllem6  25689
  Copyright terms: Public domain W3C validator