MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwn Structured version   Visualization version   GIF version

Theorem mirbtwn 25773
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirbtwn (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))

Proof of Theorem mirbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
2 mirval.d . . . . 5 = (dist‘𝐺)
3 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
5 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . . 5 (𝜑𝐴𝑃)
8 mirfv.m . . . . 5 𝑀 = (𝑆𝐴)
9 mirfv.b . . . . 5 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 25771 . . . 4 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
111, 2, 3, 6, 9, 7mirreu3 25769 . . . . 5 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
12 riotacl2 6788 . . . . 5 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1311, 12syl 17 . . . 4 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1410, 13eqeltrd 2839 . . 3 (𝜑 → (𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
15 oveq2 6822 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝐴 𝑧) = (𝐴 (𝑀𝐵)))
1615eqeq1d 2762 . . . . 5 (𝑧 = (𝑀𝐵) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐵)) = (𝐴 𝐵)))
17 oveq1 6821 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝑧𝐼𝐵) = ((𝑀𝐵)𝐼𝐵))
1817eleq2d 2825 . . . . 5 (𝑧 = (𝑀𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵)))
1916, 18anbi12d 749 . . . 4 (𝑧 = (𝑀𝐵) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2019elrab 3504 . . 3 ((𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2114, 20sylib 208 . 2 (𝜑 → ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2221simprrd 814 1 (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  ∃!wreu 3052  {crab 3054  cfv 6049  crio 6774  (class class class)co 6814  Basecbs 16079  distcds 16172  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  pInvGcmir 25767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkg 25572  df-mir 25768
This theorem is referenced by:  mirmir  25777  mirinv  25781  miriso  25785  mirmir2  25789  mirln  25791  mirln2  25792  mirconn  25793  mirhl2  25796  mircgrextend  25797  mirtrcgr  25798  mirauto  25799  miduniq  25800  krippenlem  25805  ragflat  25819  ragcgr  25822  footex  25833  colperpexlem1  25842  colperpexlem3  25844  mideulem2  25846  opphllem  25847  opphllem1  25859  opphllem2  25860  opphllem4  25862  colhp  25882  midbtwn  25891  lmieu  25896  lmiisolem  25908
  Copyright terms: Public domain W3C validator