Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Structured version   Visualization version   GIF version

Theorem minvecolem6 27866
 Description: Lemma for minveco 27868. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 27797 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
43adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmCVec)
5 minveco.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝐴𝑋)
7 inss1 3866 . . . . . . . . 9 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
8 minveco.w . . . . . . . . 9 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
97, 8sseldi 3634 . . . . . . . 8 (𝜑𝑊 ∈ (SubSp‘𝑈))
10 minveco.x . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 minveco.y . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
12 eqid 2651 . . . . . . . . 9 (SubSp‘𝑈) = (SubSp‘𝑈)
1310, 11, 12sspba 27710 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
143, 9, 13syl2anc 694 . . . . . . 7 (𝜑𝑌𝑋)
1514sselda 3636 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥𝑋)
16 minveco.m . . . . . . 7 𝑀 = ( −𝑣𝑈)
17 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
18 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
1910, 16, 17, 18imsdval 27669 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
204, 6, 15, 19syl3anc 1366 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
2120oveq1d 6705 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴𝑀𝑥))↑2))
22 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
23 minveco.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 27858 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2726simp1d 1093 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
2826simp2d 1094 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
29 0red 10079 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3026simp3d 1095 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
31 breq1 4688 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3231ralbidv 3015 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3332rspcev 3340 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3429, 30, 33syl2anc 694 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
35 infrecl 11043 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3627, 28, 34, 35syl3anc 1366 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
3722, 36syl5eqel 2734 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
3837resqcld 13075 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
3938recnd 10106 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4039addid1d 10274 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4121, 40breq12d 4698 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
4210, 16nvmcl 27629 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝑀𝑥) ∈ 𝑋)
434, 6, 15, 42syl3anc 1366 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝑀𝑥) ∈ 𝑋)
4410, 17nvcl 27644 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
454, 43, 44syl2anc 694 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
4610, 17nvge0 27656 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
474, 43, 46syl2anc 694 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
48 infregelb 11045 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4927, 28, 34, 29, 48syl31anc 1369 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5030, 49mpbird 247 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5150, 22syl6breqr 4727 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5245, 37, 47, 51le2sqd 13084 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
5322breq2i 4693 . . . 4 ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ))
54 infregelb 11045 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5527, 28, 34, 45, 54syl31anc 1369 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5653, 55syl5bb 272 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5741, 52, 563bitr2d 296 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5824raleqi 3172 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤)
59 fvex 6239 . . . . 5 (𝑁‘(𝐴𝑀𝑦)) ∈ V
6059rgenw 2953 . . . 4 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
61 eqid 2651 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
62 breq2 4689 . . . . 5 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6361, 62ralrnmpt 6408 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6460, 63ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6558, 64bitri 264 . 2 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6657, 65syl6bb 276 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144  ‘cfv 5926  (class class class)co 6690  infcinf 8388  ℝcr 9973  0cc0 9974   + caddc 9977   < clt 10112   ≤ cle 10113  2c2 11108  ↑cexp 12900  MetOpencmopn 19784  NrmCVeccnv 27567  BaseSetcba 27569   −𝑣 cnsb 27572  normCVcnmcv 27573  IndMetcims 27574  SubSpcss 27704  CPreHilOLDccphlo 27795  CBanccbn 27846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-ssp 27705  df-ph 27796  df-cbn 27847 This theorem is referenced by:  minvecolem7  27867
 Copyright terms: Public domain W3C validator