![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version |
Description: Lemma for minveco 28080. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
Ref | Expression |
---|---|
minvecolem4a | ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
2 | phnv 28009 | . . . . . 6 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
4 | minveco.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
5 | elin 3947 | . . . . . . 7 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
6 | 4, 5 | sylib 208 | . . . . . 6 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
7 | 6 | simpld 482 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
8 | minveco.y | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
9 | minveco.d | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
10 | eqid 2771 | . . . . . 6 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
11 | eqid 2771 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
12 | 8, 9, 10, 11 | sspims 27934 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
13 | 3, 7, 12 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
14 | 6 | simprd 483 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ CBan) |
15 | eqid 2771 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
16 | 15, 10 | cbncms 28061 | . . . . 5 ⊢ (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
18 | 13, 17 | eqeltrrd 2851 | . . 3 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊))) |
19 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
20 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
21 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
22 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
23 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
24 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
25 | minveco.s | . . . . 5 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
26 | minveco.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
27 | minveco.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 28072 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
29 | 19, 9 | imsmet 27886 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
30 | 1, 2, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
31 | metxmet 22359 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
33 | causs 23315 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
34 | 32, 26, 33 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) |
35 | 28, 34 | mpbid 222 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) |
36 | eqid 2771 | . . . 4 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
37 | 36 | cmetcau 23306 | . . 3 ⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
38 | 18, 35, 37 | syl2anc 573 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
39 | xmetres 22389 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) | |
40 | 36 | methaus 22545 | . . . 4 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
41 | 32, 39, 40 | 3syl 18 | . . 3 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
42 | lmfun 21406 | . . 3 ⊢ ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
43 | funfvbrb 6473 | . . 3 ⊢ (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
44 | 41, 42, 43 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
45 | 38, 44 | mpbid 222 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 class class class wbr 4786 ↦ cmpt 4863 × cxp 5247 dom cdm 5249 ran crn 5250 ↾ cres 5251 Fun wfun 6025 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 infcinf 8503 ℝcr 10137 1c1 10139 + caddc 10141 < clt 10276 ≤ cle 10277 / cdiv 10886 ℕcn 11222 2c2 11272 ↑cexp 13067 ∞Metcxmt 19946 Metcme 19947 MetOpencmopn 19951 ⇝𝑡clm 21251 Hauscha 21333 Caucca 23270 CMetcms 23271 NrmCVeccnv 27779 BaseSetcba 27781 −𝑣 cnsb 27784 normCVcnmcv 27785 IndMetcims 27786 SubSpcss 27916 CPreHilOLDccphlo 28007 CBanccbn 28058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-n0 11495 df-z 11580 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ico 12386 df-icc 12387 df-fl 12801 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-rest 16291 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-top 20919 df-topon 20936 df-bases 20971 df-ntr 21045 df-nei 21123 df-lm 21254 df-haus 21340 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-cfil 23272 df-cau 23273 df-cmet 23274 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 df-ssp 27917 df-ph 28008 df-cbn 28059 |
This theorem is referenced by: minvecolem4b 28074 minvecolem4 28076 |
Copyright terms: Public domain | W3C validator |