MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4a Structured version   Visualization version   GIF version

Theorem minvecolem4a 28073
Description: Lemma for minveco 28080. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4a (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4a
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 28009 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . 5 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . . . 7 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 3947 . . . . . . 7 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 208 . . . . . 6 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 482 . . . . 5 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
9 minveco.d . . . . . 6 𝐷 = (IndMet‘𝑈)
10 eqid 2771 . . . . . 6 (IndMet‘𝑊) = (IndMet‘𝑊)
11 eqid 2771 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
128, 9, 10, 11sspims 27934 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
133, 7, 12syl2anc 573 . . . 4 (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
146simprd 483 . . . . 5 (𝜑𝑊 ∈ CBan)
15 eqid 2771 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1615, 10cbncms 28061 . . . . 5 (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1714, 16syl 17 . . . 4 (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1813, 17eqeltrrd 2851 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)))
19 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
20 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
21 minveco.n . . . . 5 𝑁 = (normCV𝑈)
22 minveco.a . . . . 5 (𝜑𝐴𝑋)
23 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . 5 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . 5 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
2819, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27minvecolem3 28072 . . . 4 (𝜑𝐹 ∈ (Cau‘𝐷))
2919, 9imsmet 27886 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
301, 2, 293syl 18 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
31 metxmet 22359 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3230, 31syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
33 causs 23315 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3432, 26, 33syl2anc 573 . . . 4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3528, 34mpbid 222 . . 3 (𝜑𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))
36 eqid 2771 . . . 4 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3736cmetcau 23306 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
3818, 35, 37syl2anc 573 . 2 (𝜑𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
39 xmetres 22389 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
4036methaus 22545 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
4132, 39, 403syl 18 . . 3 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
42 lmfun 21406 . . 3 ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
43 funfvbrb 6473 . . 3 (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4441, 42, 433syl 18 . 2 (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4538, 44mpbid 222 1 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cin 3722   class class class wbr 4786  cmpt 4863   × cxp 5247  dom cdm 5249  ran crn 5250  cres 5251  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6793  infcinf 8503  cr 10137  1c1 10139   + caddc 10141   < clt 10276  cle 10277   / cdiv 10886  cn 11222  2c2 11272  cexp 13067  ∞Metcxmt 19946  Metcme 19947  MetOpencmopn 19951  𝑡clm 21251  Hauscha 21333  Caucca 23270  CMetcms 23271  NrmCVeccnv 27779  BaseSetcba 27781  𝑣 cnsb 27784  normCVcnmcv 27785  IndMetcims 27786  SubSpcss 27916  CPreHilOLDccphlo 28007  CBanccbn 28058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ico 12386  df-icc 12387  df-fl 12801  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-rest 16291  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-top 20919  df-topon 20936  df-bases 20971  df-ntr 21045  df-nei 21123  df-lm 21254  df-haus 21340  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-cfil 23272  df-cau 23273  df-cmet 23274  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-vs 27794  df-nmcv 27795  df-ims 27796  df-ssp 27917  df-ph 28008  df-cbn 28059
This theorem is referenced by:  minvecolem4b  28074  minvecolem4  28076
  Copyright terms: Public domain W3C validator