MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem2 Structured version   Visualization version   GIF version

Theorem minvecolem2 28040
Description: Lemma for minveco 28049. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minvecolem2.1 (𝜑𝐵 ∈ ℝ)
minvecolem2.2 (𝜑 → 0 ≤ 𝐵)
minvecolem2.3 (𝜑𝐾𝑌)
minvecolem2.4 (𝜑𝐿𝑌)
minvecolem2.5 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
minvecolem2.6 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
Assertion
Ref Expression
minvecolem2 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝐿   𝑦,𝑀   𝑦,𝑁   𝜑,𝑦   𝑦,𝑆   𝑦,𝐴   𝑦,𝐷   𝑦,𝑈   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem2
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 11289 . . . . . 6 4 ∈ ℝ
2 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
3 minveco.x . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
4 minveco.m . . . . . . . . . . 11 𝑀 = ( −𝑣𝑈)
5 minveco.n . . . . . . . . . . 11 𝑁 = (normCV𝑈)
6 minveco.y . . . . . . . . . . 11 𝑌 = (BaseSet‘𝑊)
7 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 minveco.a . . . . . . . . . . 11 (𝜑𝐴𝑋)
10 minveco.d . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
11 minveco.j . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
12 minveco.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
133, 4, 5, 6, 7, 8, 9, 10, 11, 12minvecolem1 28039 . . . . . . . . . 10 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1413simp1d 1137 . . . . . . . . 9 (𝜑𝑅 ⊆ ℝ)
1513simp2d 1138 . . . . . . . . 9 (𝜑𝑅 ≠ ∅)
16 0re 10232 . . . . . . . . . 10 0 ∈ ℝ
1713simp3d 1139 . . . . . . . . . 10 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
18 breq1 4807 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1918ralbidv 3124 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2019rspcev 3449 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2116, 17, 20sylancr 698 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
22 infrecl 11197 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2314, 15, 21, 22syl3anc 1477 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
242, 23syl5eqel 2843 . . . . . . 7 (𝜑𝑆 ∈ ℝ)
2524resqcld 13229 . . . . . 6 (𝜑 → (𝑆↑2) ∈ ℝ)
26 remulcl 10213 . . . . . 6 ((4 ∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 · (𝑆↑2)) ∈ ℝ)
271, 25, 26sylancr 698 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ∈ ℝ)
28 phnv 27978 . . . . . . . . 9 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
297, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
303, 10imsmet 27855 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
3129, 30syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
32 inss1 3976 . . . . . . . . . 10 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
3332, 8sseldi 3742 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
34 eqid 2760 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
353, 6, 34sspba 27891 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3629, 33, 35syl2anc 696 . . . . . . . 8 (𝜑𝑌𝑋)
37 minvecolem2.3 . . . . . . . 8 (𝜑𝐾𝑌)
3836, 37sseldd 3745 . . . . . . 7 (𝜑𝐾𝑋)
39 minvecolem2.4 . . . . . . . 8 (𝜑𝐿𝑌)
4036, 39sseldd 3745 . . . . . . 7 (𝜑𝐿𝑋)
41 metcl 22338 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) ∈ ℝ)
4231, 38, 40, 41syl3anc 1477 . . . . . 6 (𝜑 → (𝐾𝐷𝐿) ∈ ℝ)
4342resqcld 13229 . . . . 5 (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ)
4427, 43readdcld 10261 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
45 ax-1cn 10186 . . . . . . . . . . . . 13 1 ∈ ℂ
46 halfcl 11449 . . . . . . . . . . . . 13 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
4745, 46mp1i 13 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℂ)
48 eqid 2760 . . . . . . . . . . . . . . 15 ( +𝑣𝑈) = ( +𝑣𝑈)
49 eqid 2760 . . . . . . . . . . . . . . 15 ( +𝑣𝑊) = ( +𝑣𝑊)
506, 48, 49, 34sspgval 27893 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝐾𝑌𝐿𝑌)) → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5129, 33, 37, 39, 50syl22anc 1478 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5234sspnv 27890 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
5329, 33, 52syl2anc 696 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ NrmCVec)
546, 49nvgcl 27784 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝐾𝑌𝐿𝑌) → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5553, 37, 39, 54syl3anc 1477 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5651, 55eqeltrrd 2840 . . . . . . . . . . . 12 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)
57 eqid 2760 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
58 eqid 2760 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
596, 57, 58, 34sspsval 27895 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ ((1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
6029, 33, 47, 56, 59syl22anc 1478 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
616, 58nvscl 27790 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6253, 47, 56, 61syl3anc 1477 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6360, 62eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6436, 63sseldd 3745 . . . . . . . . 9 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)
653, 4nvmcl 27810 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋) → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
6629, 9, 64, 65syl3anc 1477 . . . . . . . 8 (𝜑 → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
673, 5nvcl 27825 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6829, 66, 67syl2anc 696 . . . . . . 7 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6968resqcld 13229 . . . . . 6 (𝜑 → ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ)
70 remulcl 10213 . . . . . 6 ((4 ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
711, 69, 70sylancr 698 . . . . 5 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
7271, 43readdcld 10261 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
73 minvecolem2.1 . . . . . 6 (𝜑𝐵 ∈ ℝ)
7425, 73readdcld 10261 . . . . 5 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ)
75 remulcl 10213 . . . . 5 ((4 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
761, 74, 75sylancr 698 . . . 4 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
7716a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
78 infregelb 11199 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7914, 15, 21, 77, 78syl31anc 1480 . . . . . . . . 9 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8017, 79mpbird 247 . . . . . . . 8 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
8180, 2syl6breqr 4846 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
82 eqid 2760 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
83 oveq2 6821 . . . . . . . . . . . . . . 15 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝐴𝑀𝑦) = (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
8483fveq2d 6356 . . . . . . . . . . . . . 14 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝑁‘(𝐴𝑀𝑦)) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
8584eqeq2d 2770 . . . . . . . . . . . . 13 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
8685rspcev 3449 . . . . . . . . . . . 12 ((((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
8763, 82, 86sylancl 697 . . . . . . . . . . 11 (𝜑 → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
88 eqid 2760 . . . . . . . . . . . 12 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
89 fvex 6362 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀𝑦)) ∈ V
9088, 89elrnmpti 5531 . . . . . . . . . . 11 ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ↔ ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
9187, 90sylibr 224 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
9291, 12syl6eleqr 2850 . . . . . . . . 9 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅)
93 infrelb 11200 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
9414, 21, 92, 93syl3anc 1477 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
952, 94syl5eqbr 4839 . . . . . . 7 (𝜑𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
96 le2sq2 13133 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
9724, 81, 68, 95, 96syl22anc 1478 . . . . . 6 (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
98 4pos 11308 . . . . . . . . 9 0 < 4
991, 98pm3.2i 470 . . . . . . . 8 (4 ∈ ℝ ∧ 0 < 4)
100 lemul2 11068 . . . . . . . 8 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10199, 100mp3an3 1562 . . . . . . 7 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10225, 69, 101syl2anc 696 . . . . . 6 (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10397, 102mpbid 222 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
10427, 71, 43, 103leadd1dd 10833 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)))
105 metcl 22338 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) ∈ ℝ)
10631, 9, 38, 105syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) ∈ ℝ)
107106resqcld 13229 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ)
108 metcl 22338 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) ∈ ℝ)
10931, 9, 40, 108syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) ∈ ℝ)
110109resqcld 13229 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ)
111 minvecolem2.5 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
112 minvecolem2.6 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
113107, 110, 74, 74, 111, 112le2addd 10838 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
11474recnd 10260 . . . . . . . 8 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ)
1151142timesd 11467 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
116113, 115breqtrrd 4832 . . . . . 6 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)))
117107, 110readdcld 10261 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ)
118 2re 11282 . . . . . . . 8 2 ∈ ℝ
119 remulcl 10213 . . . . . . . 8 ((2 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
120118, 74, 119sylancr 698 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
121 2pos 11304 . . . . . . . . 9 0 < 2
122118, 121pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
123 lemul2 11068 . . . . . . . 8 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
124122, 123mp3an3 1562 . . . . . . 7 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
125117, 120, 124syl2anc 696 . . . . . 6 (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
126116, 125mpbid 222 . . . . 5 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵))))
1273, 4nvmcl 27810 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝑀𝐾) ∈ 𝑋)
12829, 9, 38, 127syl3anc 1477 . . . . . . 7 (𝜑 → (𝐴𝑀𝐾) ∈ 𝑋)
1293, 4nvmcl 27810 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝑀𝐿) ∈ 𝑋)
13029, 9, 40, 129syl3anc 1477 . . . . . . 7 (𝜑 → (𝐴𝑀𝐿) ∈ 𝑋)
1313, 48, 4, 5phpar2 27987 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑀𝐾) ∈ 𝑋 ∧ (𝐴𝑀𝐿) ∈ 𝑋) → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
1327, 128, 130, 131syl3anc 1477 . . . . . 6 (𝜑 → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
133 2cn 11283 . . . . . . . . . 10 2 ∈ ℂ
13468recnd 10260 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ)
135 sqmul 13120 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ) → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
136133, 134, 135sylancr 698 . . . . . . . . 9 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
137 sq2 13154 . . . . . . . . . 10 (2↑2) = 4
138137oveq1i 6823 . . . . . . . . 9 ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
139136, 138syl6eq 2810 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
140133a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
1413, 57, 5nvs 27827 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
14229, 140, 66, 141syl3anc 1477 . . . . . . . . . . 11 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
143 0le2 11303 . . . . . . . . . . . . 13 0 ≤ 2
144 absid 14235 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
145118, 143, 144mp2an 710 . . . . . . . . . . . 12 (abs‘2) = 2
146145oveq1i 6823 . . . . . . . . . . 11 ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
147142, 146syl6eq 2810 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
1483, 4, 57nvmdi 27812 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)) → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
14929, 140, 9, 64, 148syl13anc 1479 . . . . . . . . . . . 12 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1503, 48, 57nv2 27796 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
15129, 9, 150syl2anc 696 . . . . . . . . . . . . 13 (𝜑 → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
152 2ne0 11305 . . . . . . . . . . . . . . . . 17 2 ≠ 0
153133, 152recidi 10948 . . . . . . . . . . . . . . . 16 (2 · (1 / 2)) = 1
154153oveq1i 6823 . . . . . . . . . . . . . . 15 ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))
1553, 48nvgcl 27784 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝐾𝑋𝐿𝑋) → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
15629, 38, 40, 155syl3anc 1477 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
1573, 57nvsid 27791 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋) → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
15829, 156, 157syl2anc 696 . . . . . . . . . . . . . . 15 (𝜑 → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
159154, 158syl5eq 2806 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
1603, 57nvsass 27792 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
16129, 140, 47, 156, 160syl13anc 1479 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
162159, 161eqtr3d 2796 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑈)𝐿) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
163151, 162oveq12d 6831 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1643, 48, 4nvaddsub4 27821 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐴𝑋) ∧ (𝐾𝑋𝐿𝑋)) → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
16529, 9, 9, 38, 40, 164syl122anc 1486 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
166149, 163, 1653eqtr2d 2800 . . . . . . . . . . 11 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
167166fveq2d 6356 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
168147, 167eqtr3d 2796 . . . . . . . . 9 (𝜑 → (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
169168oveq1d 6828 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
170139, 169eqtr3d 2796 . . . . . . 7 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
1713, 4, 5, 10imsdval 27850 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐿𝑋𝐾𝑋) → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
17229, 40, 38, 171syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
173 metsym 22356 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
17431, 38, 40, 173syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
1753, 4nvnnncan1 27811 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐾𝑋𝐿𝑋)) → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
17629, 9, 38, 40, 175syl13anc 1479 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
177176fveq2d 6356 . . . . . . . . 9 (𝜑 → (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))) = (𝑁‘(𝐿𝑀𝐾)))
178172, 174, 1773eqtr4d 2804 . . . . . . . 8 (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))))
179178oveq1d 6828 . . . . . . 7 (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2))
180170, 179oveq12d 6831 . . . . . 6 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)))
1813, 4, 5, 10imsdval 27850 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
18229, 9, 38, 181syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
183182oveq1d 6828 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴𝑀𝐾))↑2))
1843, 4, 5, 10imsdval 27850 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
18529, 9, 40, 184syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
186185oveq1d 6828 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴𝑀𝐿))↑2))
187183, 186oveq12d 6831 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2)))
188187oveq2d 6829 . . . . . 6 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
189132, 180, 1883eqtr4d 2804 . . . . 5 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))))
190 2t2e4 11369 . . . . . . 7 (2 · 2) = 4
191190oveq1i 6823 . . . . . 6 ((2 · 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵))
192140, 140, 114mulassd 10255 . . . . . 6 (𝜑 → ((2 · 2) · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
193191, 192syl5eqr 2808 . . . . 5 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
194126, 189, 1933brtr4d 4836 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
19544, 72, 76, 104, 194letrd 10386 . . 3 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
196 4cn 11290 . . . . 5 4 ∈ ℂ
197196a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
19825recnd 10260 . . . 4 (𝜑 → (𝑆↑2) ∈ ℂ)
19973recnd 10260 . . . 4 (𝜑𝐵 ∈ ℂ)
200197, 198, 199adddid 10256 . . 3 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵)))
201195, 200breqtrd 4830 . 2 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))
202 remulcl 10213 . . . 4 ((4 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (4 · 𝐵) ∈ ℝ)
2031, 73, 202sylancr 698 . . 3 (𝜑 → (4 · 𝐵) ∈ ℝ)
20443, 203, 27leadd2d 10814 . 2 (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))))
205201, 204mpbird 247 1 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cin 3714  wss 3715  c0 4058   class class class wbr 4804  cmpt 4881  ran crn 5267  cfv 6049  (class class class)co 6813  infcinf 8512  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267   / cdiv 10876  2c2 11262  4c4 11264  cexp 13054  abscabs 14173  Metcme 19934  MetOpencmopn 19938  NrmCVeccnv 27748   +𝑣 cpv 27749  BaseSetcba 27750   ·𝑠OLD cns 27751  𝑣 cnsb 27753  normCVcnmcv 27754  IndMetcims 27755  SubSpcss 27885  CPreHilOLDccphlo 27976  CBanccbn 28027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-xadd 12140  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-xmet 19941  df-met 19942  df-grpo 27656  df-gid 27657  df-ginv 27658  df-gdiv 27659  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-vs 27763  df-nmcv 27764  df-ims 27765  df-ssp 27886  df-ph 27977  df-cbn 28028
This theorem is referenced by:  minvecolem3  28041  minvecolem7  28048
  Copyright terms: Public domain W3C validator