![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveco | Structured version Visualization version GIF version |
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
minveco | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.x | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | minveco.m | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
3 | minveco.n | . 2 ⊢ 𝑁 = (normCV‘𝑈) | |
4 | minveco.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
5 | minveco.u | . 2 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
6 | minveco.w | . 2 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
7 | minveco.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
8 | eqid 2770 | . 2 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
9 | eqid 2770 | . 2 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
10 | oveq2 6800 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴𝑀𝑗) = (𝐴𝑀𝑦)) | |
11 | 10 | fveq2d 6336 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴𝑀𝑗)) = (𝑁‘(𝐴𝑀𝑦))) |
12 | 11 | cbvmptv 4882 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
13 | 12 | rneqi 5490 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
14 | eqid 2770 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14 | minvecolem7 28073 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ∃!wreu 3062 ∩ cin 3720 class class class wbr 4784 ↦ cmpt 4861 ran crn 5250 ‘cfv 6031 (class class class)co 6792 infcinf 8502 ℝcr 10136 < clt 10275 ≤ cle 10276 MetOpencmopn 19950 BaseSetcba 27775 −𝑣 cnsb 27778 normCVcnmcv 27779 IndMetcims 27780 SubSpcss 27910 CPreHilOLDccphlo 28001 CBanccbn 28052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cc 9458 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fi 8472 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ico 12385 df-icc 12386 df-fl 12800 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-rest 16290 df-topgen 16311 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-top 20918 df-topon 20935 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lm 21253 df-haus 21339 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-cfil 23271 df-cau 23272 df-cmet 23273 df-grpo 27681 df-gid 27682 df-ginv 27683 df-gdiv 27684 df-ablo 27733 df-vc 27748 df-nv 27781 df-va 27784 df-ba 27785 df-sm 27786 df-0v 27787 df-vs 27788 df-nmcv 27789 df-ims 27790 df-ssp 27911 df-ph 28002 df-cbn 28053 |
This theorem is referenced by: pjhthlem2 28585 |
Copyright terms: Public domain | W3C validator |