MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem6 Structured version   Visualization version   GIF version

Theorem minveclem6 23423
Description: Lemma for minvec 23425. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.d . . . . . . . 8 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
21oveqi 6805 . . . . . . 7 (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥)
3 minvec.a . . . . . . . . 9 (𝜑𝐴𝑋)
43adantr 466 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝐴𝑋)
5 minvec.y . . . . . . . . . 10 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.x . . . . . . . . . . 11 𝑋 = (Base‘𝑈)
7 eqid 2770 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
86, 7lssss 19146 . . . . . . . . . 10 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
95, 8syl 17 . . . . . . . . 9 (𝜑𝑌𝑋)
109sselda 3750 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥𝑋)
114, 10ovresd 6947 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥))
122, 11syl5eq 2816 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥))
13 minvec.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂPreHil)
14 cphngp 23191 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
1513, 14syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmGrp)
1615adantr 466 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmGrp)
17 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
18 minvec.m . . . . . . . 8 = (-g𝑈)
19 eqid 2770 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
2017, 6, 18, 19ngpds 22627 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2116, 4, 10, 20syl3anc 1475 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2212, 21eqtrd 2804 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 𝑥)))
2322oveq1d 6807 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 𝑥))↑2))
24 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
25 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
26 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
27 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
286, 18, 17, 13, 5, 25, 3, 26, 27minveclem1 23413 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2928adantr 466 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
3029simp1d 1135 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
3129simp2d 1136 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
32 0red 10242 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3329simp3d 1137 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
34 breq1 4787 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3534ralbidv 3134 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3635rspcev 3458 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3732, 33, 36syl2anc 565 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
38 infrecl 11206 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3930, 31, 37, 38syl3anc 1475 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
4024, 39syl5eqel 2853 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
4140resqcld 13241 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
4241recnd 10269 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4342addid1d 10437 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4423, 43breq12d 4797 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
45 cphlmod 23192 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
4613, 45syl 17 . . . . . . 7 (𝜑𝑈 ∈ LMod)
4746adantr 466 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ LMod)
486, 18lmodvsubcl 19117 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑥𝑋) → (𝐴 𝑥) ∈ 𝑋)
4947, 4, 10, 48syl3anc 1475 . . . . 5 ((𝜑𝑥𝑌) → (𝐴 𝑥) ∈ 𝑋)
506, 17nmcl 22639 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
5116, 49, 50syl2anc 565 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
526, 17nmge0 22640 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑥)))
5316, 49, 52syl2anc 565 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴 𝑥)))
54 infregelb 11208 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5530, 31, 37, 32, 54syl31anc 1478 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5633, 55mpbird 247 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5756, 24syl6breqr 4826 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5851, 40, 53, 57le2sqd 13250 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
5924breq2i 4792 . . . 4 ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ))
60 infregelb 11208 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6130, 31, 37, 51, 60syl31anc 1478 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6259, 61syl5bb 272 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6344, 58, 623bitr2d 296 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6427raleqi 3290 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤)
65 fvex 6342 . . . . 5 (𝑁‘(𝐴 𝑦)) ∈ V
6665rgenw 3072 . . . 4 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
67 eqid 2770 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
68 breq2 4788 . . . . 5 (𝑤 = (𝑁‘(𝐴 𝑦)) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
6967, 68ralrnmpt 6511 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
7066, 69ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7164, 70bitri 264 . 2 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7263, 71syl6bb 276 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  Vcvv 3349  wss 3721  c0 4061   class class class wbr 4784  cmpt 4861   × cxp 5247  ran crn 5250  cres 5251  cfv 6031  (class class class)co 6792  infcinf 8502  cr 10136  0cc0 10137   + caddc 10140   < clt 10275  cle 10276  2c2 11271  cexp 13066  Basecbs 16063  s cress 16064  distcds 16157  TopOpenctopn 16289  -gcsg 17631  LModclmod 19072  LSubSpclss 19141  normcnm 22600  NrmGrpcngp 22601  ℂPreHilccph 23184  CMetSpccms 23347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-seq 13008  df-exp 13067  df-0g 16309  df-topgen 16311  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-lmod 19074  df-lss 19142  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-xms 22344  df-ms 22345  df-nm 22606  df-ngp 22607  df-nlm 22610  df-cph 23186
This theorem is referenced by:  minveclem7  23424
  Copyright terms: Public domain W3C validator