Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3a Structured version   Visualization version   GIF version

Theorem minveclem3a 23419
 Description: Lemma for minvec 23428. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem3a (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆

Proof of Theorem minveclem3a
StepHypRef Expression
1 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
2 eqid 2761 . . . 4 (Base‘(𝑈s 𝑌)) = (Base‘(𝑈s 𝑌))
3 eqid 2761 . . . 4 ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
42, 3cmscmet 23364 . . 3 ((𝑈s 𝑌) ∈ CMetSp → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
51, 4syl 17 . 2 (𝜑 → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
6 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
76reseq1i 5548 . . 3 (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌))
8 minvec.y . . . . . . 7 (𝜑𝑌 ∈ (LSubSp‘𝑈))
9 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
10 eqid 2761 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
119, 10lssss 19160 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
128, 11syl 17 . . . . . 6 (𝜑𝑌𝑋)
13 xpss12 5282 . . . . . 6 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1412, 12, 13syl2anc 696 . . . . 5 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1514resabs1d 5587 . . . 4 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌)))
16 eqid 2761 . . . . . . 7 (𝑈s 𝑌) = (𝑈s 𝑌)
17 eqid 2761 . . . . . . 7 (dist‘𝑈) = (dist‘𝑈)
1816, 17ressds 16296 . . . . . 6 (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
198, 18syl 17 . . . . 5 (𝜑 → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
2016, 9ressbas2 16154 . . . . . . 7 (𝑌𝑋𝑌 = (Base‘(𝑈s 𝑌)))
2112, 20syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(𝑈s 𝑌)))
2221sqxpeqd 5299 . . . . 5 (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
2319, 22reseq12d 5553 . . . 4 (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2415, 23eqtrd 2795 . . 3 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
257, 24syl5eq 2807 . 2 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2621fveq2d 6358 . 2 (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈s 𝑌))))
275, 25, 263eltr4d 2855 1 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632   ∈ wcel 2140   ⊆ wss 3716   ↦ cmpt 4882   × cxp 5265  ran crn 5268   ↾ cres 5269  ‘cfv 6050  (class class class)co 6815  infcinf 8515  ℝcr 10148   < clt 10287  Basecbs 16080   ↾s cress 16081  distcds 16173  TopOpenctopn 16305  -gcsg 17646  LSubSpclss 19155  normcnm 22603  ℂPreHilccph 23187  CMetcms 23273  CMetSpccms 23350 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-ds 16187  df-lss 19156  df-cms 23353 This theorem is referenced by:  minveclem3  23421  minveclem4a  23422
 Copyright terms: Public domain W3C validator