![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > min2 | Structured version Visualization version GIF version |
Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
min2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10269 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10269 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmin2 12194 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | |
4 | 1, 2, 3 | syl2an 495 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 ifcif 4222 class class class wbr 4796 ℝcr 10119 ℝ*cxr 10257 ≤ cle 10259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-pre-lttri 10194 ax-pre-lttrn 10195 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-po 5179 df-so 5180 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 |
This theorem is referenced by: ssfzunsnext 12571 reccn2 14518 ssblex 22426 nlmvscnlem1 22683 nrginvrcnlem 22688 icccmplem2 22819 xlebnum 22957 ipcnlem1 23236 ivthlem2 23413 ovolicc2lem5 23481 ioombl1lem1 23518 mbfi1fseqlem4 23676 mbfi1fseqlem5 23677 aalioulem5 24282 aalioulem6 24283 cxpcn3lem 24679 ftalem5 24994 chtdif 25075 ppidif 25080 chebbnd1lem1 25349 itg2addnc 33769 min2d 40193 mullimc 40343 mullimcf 40350 limcleqr 40371 addlimc 40375 0ellimcdiv 40376 limclner 40378 stoweidlem5 40717 fourierdlem104 40922 ioorrnopnlem 41019 hoidmv1lelem2 41304 smfmullem1 41496 |
Copyright terms: Public domain | W3C validator |