![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > midwwlks2s3 | Structured version Visualization version GIF version |
Description: There is a vertex between the endpoints of a walk of length 2 between two vertices as length 3 string. (Contributed by AV, 10-Jan-2022.) |
Ref | Expression |
---|---|
elwwlks2s3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
midwwlks2s3 | ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwwlks2s3.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | elwwlks2s3 27042 | . 2 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
3 | fveq1 6339 | . . . . . . . 8 ⊢ (𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = (〈“𝑎𝑏𝑐”〉‘1)) | |
4 | s3fv1 13808 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝑉 → (〈“𝑎𝑏𝑐”〉‘1) = 𝑏) | |
5 | 3, 4 | sylan9eqr 2804 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝑉 ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (𝑊‘1) = 𝑏) |
6 | 5 | ex 449 | . . . . . 6 ⊢ (𝑏 ∈ 𝑉 → (𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = 𝑏)) |
7 | 6 | adantl 473 | . . . . 5 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = 𝑏)) |
8 | 7 | rexlimdvw 3160 | . . . 4 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = 𝑏)) |
9 | 8 | reximdva 3143 | . . 3 ⊢ (𝑎 ∈ 𝑉 → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉 → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏)) |
10 | 9 | rexlimiv 3153 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉 → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏) |
11 | 2, 10 | syl 17 | 1 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∃wrex 3039 ‘cfv 6037 (class class class)co 6801 1c1 10100 2c2 11233 〈“cs3 13758 Vtxcvtx 26044 WWalksN cwwlksn 26900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-map 8013 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-fz 12491 df-fzo 12631 df-hash 13283 df-word 13456 df-concat 13458 df-s1 13459 df-s2 13764 df-s3 13765 df-wwlks 26904 df-wwlksn 26905 |
This theorem is referenced by: fusgreg2wsp 27461 |
Copyright terms: Public domain | W3C validator |