![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mideu | Structured version Visualization version GIF version |
Description: Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mideu.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mideu.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mideu.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mideu.3 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Ref | Expression |
---|---|
mideu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | colperpex.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | mideu.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | mideu.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mideu.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | mideu.3 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | midex 25849 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
11 | 5 | ad2antrr 697 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐺 ∈ TarskiG) |
12 | simplrl 754 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 ∈ 𝑃) | |
13 | simplrr 755 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑦 ∈ 𝑃) | |
14 | 7 | ad2antrr 697 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐴 ∈ 𝑃) |
15 | 8 | ad2antrr 697 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 ∈ 𝑃) |
16 | simprl 746 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑥)‘𝐴)) | |
17 | 16 | eqcomd 2776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑥)‘𝐴) = 𝐵) |
18 | simprr 748 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝐵 = ((𝑆‘𝑦)‘𝐴)) | |
19 | 18 | eqcomd 2776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → ((𝑆‘𝑦)‘𝐴) = 𝐵) |
20 | 1, 2, 3, 4, 6, 11, 12, 13, 14, 15, 17, 19 | miduniq 25800 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴))) → 𝑥 = 𝑦) |
21 | 20 | ex 397 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
22 | 21 | ralrimivva 3119 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
23 | fveq2 6332 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑆‘𝑥) = (𝑆‘𝑦)) | |
24 | 23 | fveq1d 6334 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑆‘𝑥)‘𝐴) = ((𝑆‘𝑦)‘𝐴)) |
25 | 24 | eqeq2d 2780 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑦)‘𝐴))) |
26 | 25 | rmo4 3549 | . . 3 ⊢ (∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝐵 = ((𝑆‘𝑦)‘𝐴)) → 𝑥 = 𝑦)) |
27 | 22, 26 | sylibr 224 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
28 | reu5 3307 | . 2 ⊢ (∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ↔ (∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ ∃*𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴))) | |
29 | 10, 27, 28 | sylanbrc 564 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ∃wrex 3061 ∃!wreu 3062 ∃*wrmo 3063 class class class wbr 4784 ‘cfv 6031 2c2 11271 Basecbs 16063 distcds 16157 TarskiGcstrkg 25549 DimTarskiG≥cstrkgld 25553 Itvcitv 25555 LineGclng 25556 pInvGcmir 25767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-xnn0 11565 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-hash 13321 df-word 13494 df-concat 13496 df-s1 13497 df-s2 13801 df-s3 13802 df-trkgc 25567 df-trkgb 25568 df-trkgcb 25569 df-trkgld 25571 df-trkg 25572 df-cgrg 25626 df-leg 25698 df-mir 25768 df-rag 25809 df-perpg 25811 |
This theorem is referenced by: midf 25888 ismidb 25890 |
Copyright terms: Public domain | W3C validator |