![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > midbtwn | Structured version Visualization version GIF version |
Description: Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
midbtwn | ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ismid.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | midcl.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
7 | midcl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 1, 2, 3, 4, 6, 7, 5 | midcl 25839 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃) |
9 | eqid 2748 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
10 | eqid 2748 | . . . 4 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
11 | eqid 2748 | . . . 4 ⊢ ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵)) = ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵)) | |
12 | 1, 2, 3, 9, 10, 4, 8, 11, 7 | mirbtwn 25723 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ ((((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)𝐼𝐴)) |
13 | eqidd 2749 | . . . . 5 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵)) | |
14 | 1, 2, 3, 4, 6, 7, 5, 10, 8 | ismidb 25840 | . . . . 5 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵))) |
15 | 13, 14 | mpbird 247 | . . . 4 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)) |
16 | 15 | oveq1d 6816 | . . 3 ⊢ (𝜑 → (𝐵𝐼𝐴) = ((((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)𝐼𝐴)) |
17 | 12, 16 | eleqtrrd 2830 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐵𝐼𝐴)) |
18 | 1, 2, 3, 4, 5, 8, 7, 17 | tgbtwncom 25553 | 1 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 2c2 11233 Basecbs 16030 distcds 16123 TarskiGcstrkg 25499 DimTarskiG≥cstrkgld 25503 Itvcitv 25505 LineGclng 25506 pInvGcmir 25717 midGcmid 25834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-map 8013 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8926 df-cda 9153 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-xnn0 11527 df-z 11541 df-uz 11851 df-fz 12491 df-fzo 12631 df-hash 13283 df-word 13456 df-concat 13458 df-s1 13459 df-s2 13764 df-s3 13765 df-trkgc 25517 df-trkgb 25518 df-trkgcb 25519 df-trkgld 25521 df-trkg 25522 df-cgrg 25576 df-leg 25648 df-mir 25718 df-rag 25759 df-perpg 25761 df-mid 25836 |
This theorem is referenced by: midid 25843 midcom 25844 lmieu 25846 lmimid 25856 lmiisolem 25858 hypcgrlem1 25861 hypcgrlem2 25862 lmiopp 25864 |
Copyright terms: Public domain | W3C validator |