MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmf1o Structured version   Visualization version   GIF version

Theorem mhmf1o 17567
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
mhmf1o.b 𝐵 = (Base‘𝑅)
mhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
mhmf1o (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))

Proof of Theorem mhmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 17561 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
2 mhmrcl1 17560 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2jca 555 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
43adantr 472 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
5 f1ocnv 6312 . . . . . 6 (𝐹:𝐵1-1-onto𝐶𝐹:𝐶1-1-onto𝐵)
65adantl 473 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶1-1-onto𝐵)
7 f1of 6300 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶𝐵)
9 simpll 807 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
108adantr 472 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐶𝐵)
11 simprl 811 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
1210, 11ffvelrnd 6525 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 813 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
1410, 13ffvelrnd 6525 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑦) ∈ 𝐵)
15 mhmf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
16 eqid 2761 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
17 eqid 2761 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1815, 16, 17mhmlin 17564 . . . . . . . 8 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1477 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
20 simpr 479 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
2120adantr 472 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐵1-1-onto𝐶)
22 f1ocnvfv2 6698 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑥𝐶) → (𝐹‘(𝐹𝑥)) = 𝑥)
2321, 11, 22syl2anc 696 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑥)) = 𝑥)
24 f1ocnvfv2 6698 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑦𝐶) → (𝐹‘(𝐹𝑦)) = 𝑦)
2521, 13, 24syl2anc 696 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2623, 25oveq12d 6833 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
2719, 26eqtrd 2795 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
282adantr 472 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝑅 ∈ Mnd)
2928adantr 472 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
3015, 16mndcl 17523 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
3129, 12, 14, 30syl3anc 1477 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
32 f1ocnvfv 6699 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶 ∧ ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3321, 31, 32syl2anc 696 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3427, 33mpd 15 . . . . 5 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3534ralrimivva 3110 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
36 eqid 2761 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
37 eqid 2761 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3836, 37mhm0 17565 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3938adantr 472 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑅)) = (0g𝑆))
4039eqcomd 2767 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑆) = (𝐹‘(0g𝑅)))
4140fveq2d 6358 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (𝐹‘(𝐹‘(0g𝑅))))
4215, 36mndidcl 17530 . . . . . . . 8 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
432, 42syl 17 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (0g𝑅) ∈ 𝐵)
4443adantr 472 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑅) ∈ 𝐵)
45 f1ocnvfv1 6697 . . . . . 6 ((𝐹:𝐵1-1-onto𝐶 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4620, 44, 45syl2anc 696 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4741, 46eqtrd 2795 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (0g𝑅))
488, 35, 473jca 1123 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅)))
49 mhmf1o.c . . . 4 𝐶 = (Base‘𝑆)
5049, 15, 17, 16, 37, 36ismhm 17559 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑅) ↔ ((𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅))))
514, 48, 50sylanbrc 701 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 MndHom 𝑅))
5215, 49mhmf 17562 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:𝐵𝐶)
5352adantr 472 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵𝐶)
54 ffn 6207 . . . 4 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
5553, 54syl 17 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐵)
5649, 15mhmf 17562 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑅) → 𝐹:𝐶𝐵)
5756adantl 473 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐶𝐵)
58 ffn 6207 . . . 4 (𝐹:𝐶𝐵𝐹 Fn 𝐶)
5957, 58syl 17 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐶)
60 dff1o4 6308 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
6155, 59, 60sylanbrc 701 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
6251, 61impbida 913 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  ccnv 5266   Fn wfn 6045  wf 6046  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  Basecbs 16080  +gcplusg 16164  0gc0g 16323  Mndcmnd 17516   MndHom cmhm 17555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-map 8028  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557
This theorem is referenced by:  rhmf1o  18955
  Copyright terms: Public domain W3C validator