![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusg | ⊢ · = (+g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
2 | fvex 6239 | . . . . 5 ⊢ (.r‘𝑅) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . . 4 ⊢ · ∈ V |
4 | plusgid 16024 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
5 | 4 | setsid 15961 | . . . 4 ⊢ ((𝑅 ∈ V ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
6 | 3, 5 | mpan2 707 | . . 3 ⊢ (𝑅 ∈ V → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
7 | mgpval.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 7, 1 | mgpval 18538 | . . . 4 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
9 | 8 | fveq2i 6232 | . . 3 ⊢ (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉)) |
10 | 6, 9 | syl6eqr 2703 | . 2 ⊢ (𝑅 ∈ V → · = (+g‘𝑀)) |
11 | 4 | str0 15958 | . . 3 ⊢ ∅ = (+g‘∅) |
12 | fvprc 6223 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
13 | 1, 12 | syl5eq 2697 | . . 3 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
14 | fvprc 6223 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
15 | 7, 14 | syl5eq 2697 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑀 = ∅) |
16 | 15 | fveq2d 6233 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑀) = (+g‘∅)) |
17 | 11, 13, 16 | 3eqtr4a 2711 | . 2 ⊢ (¬ 𝑅 ∈ V → · = (+g‘𝑀)) |
18 | 10, 17 | pm2.61i 176 | 1 ⊢ · = (+g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 〈cop 4216 ‘cfv 5926 (class class class)co 6690 ndxcnx 15901 sSet csts 15902 +gcplusg 15988 .rcmulr 15989 mulGrpcmgp 18535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rrecex 10046 ax-cnre 10047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-sets 15911 df-plusg 16001 df-mgp 18536 |
This theorem is referenced by: dfur2 18550 srgcl 18558 srgass 18559 srgideu 18560 srgidmlem 18566 issrgid 18569 srg1zr 18575 srgpcomp 18578 srgpcompp 18579 srgbinomlem4 18589 srgbinomlem 18590 csrgbinom 18592 ringcl 18607 crngcom 18608 iscrng2 18609 ringass 18610 ringideu 18611 ringidmlem 18616 isringid 18619 ringidss 18623 ringpropd 18628 crngpropd 18629 isringd 18631 iscrngd 18632 ring1 18648 gsummgp0 18654 prdsmgp 18656 oppr1 18680 unitgrp 18713 unitlinv 18723 unitrinv 18724 rngidpropd 18741 invrpropd 18744 dfrhm2 18765 rhmmul 18775 isrhm2d 18776 isdrng2 18805 drngmcl 18808 drngid2 18811 isdrngd 18820 subrgugrp 18847 issubrg3 18856 cntzsubr 18860 rhmpropd 18863 rlmscaf 19256 sraassa 19373 assamulgscmlem2 19397 psrcrng 19461 mplcoe3 19514 mplcoe5lem 19515 mplcoe5 19516 mplcoe2 19517 mplbas2 19518 evlslem1 19563 mpfind 19584 coe1tm 19691 ply1coe 19714 xrsmcmn 19817 cnfldexp 19827 cnmsubglem 19857 expmhm 19863 nn0srg 19864 rge0srg 19865 expghm 19892 psgnghm 19974 psgnco 19977 evpmodpmf1o 19990 ringvcl 20252 mamuvs2 20260 mat1mhm 20338 scmatmhm 20388 mdetdiaglem 20452 mdetrlin 20456 mdetrsca 20457 mdetralt 20462 mdetunilem7 20472 mdetuni0 20475 m2detleib 20485 invrvald 20530 mat2pmatmhm 20586 pm2mpmhm 20673 chfacfpmmulgsum2 20718 cpmadugsumlemB 20727 cnmpt1mulr 22032 cnmpt2mulr 22033 reefgim 24249 efabl 24341 efsubm 24342 amgm 24762 wilthlem2 24840 wilthlem3 24841 dchrelbas3 25008 dchrzrhmul 25016 dchrmulcl 25019 dchrn0 25020 dchrinvcl 25023 dchrptlem2 25035 dchrsum2 25038 sum2dchr 25044 lgseisenlem3 25147 lgseisenlem4 25148 rdivmuldivd 29919 ringinvval 29920 dvrcan5 29921 rhmunitinv 29950 iistmd 30076 xrge0iifmhm 30113 xrge0pluscn 30114 pl1cn 30129 cntzsdrg 38089 isdomn3 38099 mon1psubm 38101 deg1mhm 38102 amgm2d 38818 amgm3d 38819 amgm4d 38820 isringrng 42206 rngcl 42208 isrnghmmul 42218 lidlmmgm 42250 lidlmsgrp 42251 2zrngmmgm 42271 2zrngmsgrp 42272 2zrngnring 42277 cznrng 42280 cznnring 42281 mgpsumunsn 42465 invginvrid 42473 amgmlemALT 42877 amgmw2d 42878 |
Copyright terms: Public domain | W3C validator |