![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version |
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 18712 | . . 3 ⊢ mulGrp Fn V | |
2 | ssv 3767 | . . 3 ⊢ Ring ⊆ V | |
3 | fnssres 6166 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
4 | 1, 2, 3 | mp2an 710 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
5 | fvres 6370 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
6 | eqid 2761 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
7 | 6 | ringmgp 18774 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
8 | 5, 7 | eqeltrd 2840 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
9 | 8 | rgen 3061 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
10 | ffnfv 6553 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
11 | 4, 9, 10 | mpbir2an 993 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 ∀wral 3051 Vcvv 3341 ⊆ wss 3716 ↾ cres 5269 Fn wfn 6045 ⟶wf 6046 ‘cfv 6050 Mndcmnd 17516 mulGrpcmgp 18710 Ringcrg 18768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-ov 6818 df-mgp 18711 df-ring 18770 |
This theorem is referenced by: prdsringd 18833 prds1 18835 |
Copyright terms: Public domain | W3C validator |