Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmidmo Structured version   Visualization version   GIF version

Theorem mgmidmo 17460
 Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
mgmidmo ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢, + ,𝑥

Proof of Theorem mgmidmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . 5 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → (𝑢 + 𝑥) = 𝑥)
21ralimi 3090 . . . 4 (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)
3 simpr 479 . . . . 5 (((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → (𝑥 + 𝑤) = 𝑥)
43ralimi 3090 . . . 4 (∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)
5 oveq1 6820 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑤) = (𝑢 + 𝑤))
6 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
75, 6eqeq12d 2775 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑤) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑢))
87rspcva 3447 . . . . . . 7 ((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → (𝑢 + 𝑤) = 𝑢)
9 oveq2 6821 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑢 + 𝑥) = (𝑢 + 𝑤))
10 id 22 . . . . . . . . 9 (𝑥 = 𝑤𝑥 = 𝑤)
119, 10eqeq12d 2775 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑤))
1211rspcva 3447 . . . . . . 7 ((𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥) → (𝑢 + 𝑤) = 𝑤)
138, 12sylan9req 2815 . . . . . 6 (((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) ∧ (𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)) → 𝑢 = 𝑤)
1413an42s 905 . . . . 5 (((𝑢𝐵𝑤𝐵) ∧ (∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
1514ex 449 . . . 4 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → 𝑢 = 𝑤))
162, 4, 15syl2ani 691 . . 3 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
1716rgen2a 3115 . 2 𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
18 oveq1 6820 . . . . . 6 (𝑢 = 𝑤 → (𝑢 + 𝑥) = (𝑤 + 𝑥))
1918eqeq1d 2762 . . . . 5 (𝑢 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑤 + 𝑥) = 𝑥))
20 oveq2 6821 . . . . . 6 (𝑢 = 𝑤 → (𝑥 + 𝑢) = (𝑥 + 𝑤))
2120eqeq1d 2762 . . . . 5 (𝑢 = 𝑤 → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + 𝑤) = 𝑥))
2219, 21anbi12d 749 . . . 4 (𝑢 = 𝑤 → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)))
2322ralbidv 3124 . . 3 (𝑢 = 𝑤 → (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)))
2423rmo4 3540 . 2 (∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
2517, 24mpbir 221 1 ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃*wrmo 3053  (class class class)co 6813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rmo 3058  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6816 This theorem is referenced by:  ismgmid  17465  mndideu  17505
 Copyright terms: Public domain W3C validator