Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustel Structured version   Visualization version   GIF version

Theorem metustel 22556
 Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustel (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem metustel
StepHypRef Expression
1 metust.1 . . 3 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21eleq2i 2831 . 2 (𝐵𝐹𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
3 elex 3352 . . . 4 (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V))
5 cnvexg 7277 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
6 imaexg 7268 . . . . 5 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
7 eleq1a 2834 . . . . 5 ((𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
85, 6, 73syl 18 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
98rexlimdvw 3172 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
10 eqid 2760 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1110elrnmpt 5527 . . . 4 (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
1211a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)))))
134, 9, 12pm5.21ndd 368 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
142, 13syl5bb 272 1 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1632   ∈ wcel 2139  ∃wrex 3051  Vcvv 3340   ↦ cmpt 4881  ◡ccnv 5265  ran crn 5267   “ cima 5269  ‘cfv 6049  (class class class)co 6813  0cc0 10128  ℝ+crp 12025  [,)cico 12370  PsMetcpsmet 19932 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-xp 5272  df-rel 5273  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279 This theorem is referenced by:  metustto  22559  metustid  22560  metustexhalf  22562  metustfbas  22563  cfilucfil  22565  metucn  22577
 Copyright terms: Public domain W3C validator