![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metuel | Structured version Visualization version GIF version |
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 8-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metuel | ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metuval 22575 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) | |
2 | 1 | adantl 473 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
3 | 2 | eleq2d 2825 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ 𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))))) |
4 | oveq2 6822 | . . . . . . 7 ⊢ (𝑎 = 𝑒 → (0[,)𝑎) = (0[,)𝑒)) | |
5 | 4 | imaeq2d 5624 | . . . . . 6 ⊢ (𝑎 = 𝑒 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑒))) |
6 | 5 | cbvmptv 4902 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑒 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑒))) |
7 | 6 | rneqi 5507 | . . . 4 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑒 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑒))) |
8 | 7 | metustfbas 22583 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋))) |
9 | elfg 21896 | . . 3 ⊢ (ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)) → (𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉))) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉))) |
11 | 3, 10 | bitrd 268 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ⊆ wss 3715 ∅c0 4058 ↦ cmpt 4881 × cxp 5264 ◡ccnv 5265 ran crn 5267 “ cima 5269 ‘cfv 6049 (class class class)co 6814 0cc0 10148 ℝ+crp 12045 [,)cico 12390 PsMetcpsmet 19952 fBascfbas 19956 filGencfg 19957 metUnifcmetu 19959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-rp 12046 df-ico 12394 df-psmet 19960 df-fbas 19965 df-fg 19966 df-metu 19967 |
This theorem is referenced by: metuel2 22591 metustbl 22592 restmetu 22596 |
Copyright terms: Public domain | W3C validator |