![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metnrmlem2 | Structured version Visualization version GIF version |
Description: Lemma for metnrm 22858. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metnrmlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metnrmlem.2 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
metnrmlem.3 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
metnrmlem.4 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
metnrmlem.u | ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) |
Ref | Expression |
---|---|
metnrmlem2 | ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metnrmlem.u | . . 3 ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) | |
2 | metnrmlem.1 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | metdscn.j | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopntop 22438 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | 2 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | metnrmlem.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) | |
8 | eqid 2752 | . . . . . . . . . 10 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | cldss 21027 | . . . . . . . . 9 ⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
10 | 7, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
11 | 3 | mopnuni 22439 | . . . . . . . . 9 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
12 | 2, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
13 | 10, 12 | sseqtr4d 3775 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
14 | 13 | sselda 3736 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑋) |
15 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
16 | metnrmlem.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
17 | metnrmlem.4 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
18 | 15, 3, 2, 16, 7, 17 | metnrmlem1a 22854 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (0 < (𝐹‘𝑡) ∧ if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) ∈ ℝ+)) |
19 | 18 | simprd 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) ∈ ℝ+) |
20 | 19 | rphalfcld 12069 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ+) |
21 | 20 | rpxrd 12058 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ*) |
22 | 3 | blopn 22498 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋 ∧ (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
23 | 6, 14, 21, 22 | syl3anc 1473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
24 | 23 | ralrimiva 3096 | . . . 4 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
25 | iunopn 20897 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∀𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) → ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) | |
26 | 5, 24, 25 | syl2anc 696 | . . 3 ⊢ (𝜑 → ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ∈ 𝐽) |
27 | 1, 26 | syl5eqel 2835 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
28 | blcntr 22411 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡 ∈ 𝑋 ∧ (if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) | |
29 | 6, 14, 20, 28 | syl3anc 1473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
30 | 29 | snssd 4477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
31 | 30 | ralrimiva 3096 | . . . 4 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
32 | ss2iun 4680 | . . . 4 ⊢ (∀𝑡 ∈ 𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) → ∪ 𝑡 ∈ 𝑇 {𝑡} ⊆ ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑡 ∈ 𝑇 {𝑡} ⊆ ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2))) |
34 | iunid 4719 | . . . 4 ⊢ ∪ 𝑡 ∈ 𝑇 {𝑡} = 𝑇 | |
35 | 34 | eqcomi 2761 | . . 3 ⊢ 𝑇 = ∪ 𝑡 ∈ 𝑇 {𝑡} |
36 | 33, 35, 1 | 3sstr4g 3779 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑈) |
37 | 27, 36 | jca 555 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 ifcif 4222 {csn 4313 ∪ cuni 4580 ∪ ciun 4664 class class class wbr 4796 ↦ cmpt 4873 ran crn 5259 ‘cfv 6041 (class class class)co 6805 infcinf 8504 0cc0 10120 1c1 10121 ℝ*cxr 10257 < clt 10258 ≤ cle 10259 / cdiv 10868 2c2 11254 ℝ+crp 12017 ∞Metcxmt 19925 ballcbl 19927 MetOpencmopn 19930 Topctop 20892 Clsdccld 21014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-n0 11477 df-z 11562 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-icc 12367 df-topgen 16298 df-psmet 19932 df-xmet 19933 df-bl 19935 df-mopn 19936 df-top 20893 df-topon 20910 df-bases 20944 df-cld 21017 df-ntr 21018 df-cls 21019 |
This theorem is referenced by: metnrmlem3 22857 |
Copyright terms: Public domain | W3C validator |