![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metn0 | Structured version Visualization version GIF version |
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metn0 | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 22182 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | frel 6088 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷) | |
3 | reldm0 5375 | . . . . 5 ⊢ (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅)) |
5 | fdm 6089 | . . . . . 6 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋)) | |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
7 | 6 | eqeq1d 2653 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
8 | 4, 7 | bitrd 268 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅)) |
9 | xpeq0 5589 | . . . 4 ⊢ ((𝑋 × 𝑋) = ∅ ↔ (𝑋 = ∅ ∨ 𝑋 = ∅)) | |
10 | oridm 535 | . . . 4 ⊢ ((𝑋 = ∅ ∨ 𝑋 = ∅) ↔ 𝑋 = ∅) | |
11 | 9, 10 | bitri 264 | . . 3 ⊢ ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅) |
12 | 8, 11 | syl6bb 276 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅)) |
13 | 12 | necon3bid 2867 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 × cxp 5141 dom cdm 5143 Rel wrel 5148 ⟶wf 5922 ‘cfv 5926 ℝcr 9973 Metcme 19780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-met 19788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |