Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metf1o Structured version   Visualization version   GIF version

Theorem metf1o 33882
 Description: Use a bijection with a metric space to construct a metric on a set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
metf1o.2 𝑁 = (𝑥𝑌, 𝑦𝑌 ↦ ((𝐹𝑥)𝑀(𝐹𝑦)))
Assertion
Ref Expression
metf1o ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → 𝑁 ∈ (Met‘𝑌))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem metf1o
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 6299 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
2 ffvelrn 6521 . . . . . . . . 9 ((𝐹:𝑌𝑋𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
32ex 449 . . . . . . . 8 (𝐹:𝑌𝑋 → (𝑥𝑌 → (𝐹𝑥) ∈ 𝑋))
4 ffvelrn 6521 . . . . . . . . 9 ((𝐹:𝑌𝑋𝑦𝑌) → (𝐹𝑦) ∈ 𝑋)
54ex 449 . . . . . . . 8 (𝐹:𝑌𝑋 → (𝑦𝑌 → (𝐹𝑦) ∈ 𝑋))
63, 5anim12d 587 . . . . . . 7 (𝐹:𝑌𝑋 → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋)))
71, 6syl 17 . . . . . 6 (𝐹:𝑌1-1-onto𝑋 → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋)))
8 metcl 22358 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ)
983expib 1117 . . . . . 6 (𝑀 ∈ (Met‘𝑋) → (((𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ))
107, 9sylan9r 693 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ))
11103adant1 1125 . . . 4 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ))
1211ralrimivv 3108 . . 3 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ∀𝑥𝑌𝑦𝑌 ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ)
13 metf1o.2 . . . 4 𝑁 = (𝑥𝑌, 𝑦𝑌 ↦ ((𝐹𝑥)𝑀(𝐹𝑦)))
1413fmpt2 7406 . . 3 (∀𝑥𝑌𝑦𝑌 ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ ↔ 𝑁:(𝑌 × 𝑌)⟶ℝ)
1512, 14sylib 208 . 2 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → 𝑁:(𝑌 × 𝑌)⟶ℝ)
16 fveq2 6353 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
1716oveq1d 6829 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐹𝑥)𝑀(𝐹𝑦)) = ((𝐹𝑢)𝑀(𝐹𝑦)))
18 fveq2 6353 . . . . . . . . . . 11 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
1918oveq2d 6830 . . . . . . . . . 10 (𝑦 = 𝑣 → ((𝐹𝑢)𝑀(𝐹𝑦)) = ((𝐹𝑢)𝑀(𝐹𝑣)))
20 ovex 6842 . . . . . . . . . 10 ((𝐹𝑢)𝑀(𝐹𝑣)) ∈ V
2117, 19, 13, 20ovmpt2 6962 . . . . . . . . 9 ((𝑢𝑌𝑣𝑌) → (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))
2221eqeq1d 2762 . . . . . . . 8 ((𝑢𝑌𝑣𝑌) → ((𝑢𝑁𝑣) = 0 ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) = 0))
2322adantl 473 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝑢𝑁𝑣) = 0 ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) = 0))
24 ffvelrn 6521 . . . . . . . . . . . . 13 ((𝐹:𝑌𝑋𝑢𝑌) → (𝐹𝑢) ∈ 𝑋)
2524ex 449 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝑢𝑌 → (𝐹𝑢) ∈ 𝑋))
26 ffvelrn 6521 . . . . . . . . . . . . 13 ((𝐹:𝑌𝑋𝑣𝑌) → (𝐹𝑣) ∈ 𝑋)
2726ex 449 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝑣𝑌 → (𝐹𝑣) ∈ 𝑋))
2825, 27anim12d 587 . . . . . . . . . . 11 (𝐹:𝑌𝑋 → ((𝑢𝑌𝑣𝑌) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
291, 28syl 17 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋 → ((𝑢𝑌𝑣𝑌) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
3029imp 444 . . . . . . . . 9 ((𝐹:𝑌1-1-onto𝑋 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋))
3130adantll 752 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋))
32 meteq0 22365 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ (𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
33323expb 1114 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
3433adantlr 753 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
3531, 34syldan 488 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
36 f1of1 6298 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌1-1𝑋)
37 f1fveq 6683 . . . . . . . . 9 ((𝐹:𝑌1-1𝑋 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
3836, 37sylan 489 . . . . . . . 8 ((𝐹:𝑌1-1-onto𝑋 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
3938adantll 752 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
4023, 35, 393bitrd 294 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣))
41 ffvelrn 6521 . . . . . . . . . . . . . . 15 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
4241ex 449 . . . . . . . . . . . . . 14 (𝐹:𝑌𝑋 → (𝑤𝑌 → (𝐹𝑤) ∈ 𝑋))
4328, 42anim12d 587 . . . . . . . . . . . . 13 (𝐹:𝑌𝑋 → (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)))
441, 43syl 17 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋 → (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)))
4544imp 444 . . . . . . . . . . 11 ((𝐹:𝑌1-1-onto𝑋 ∧ ((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌)) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋))
4645adantll 752 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ ((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌)) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋))
47 mettri2 22367 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝐹𝑤) ∈ 𝑋 ∧ (𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
4847expcom 450 . . . . . . . . . . . . . 14 (((𝐹𝑤) ∈ 𝑋 ∧ (𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) → (𝑀 ∈ (Met‘𝑋) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
49483expb 1114 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ 𝑋 ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → (𝑀 ∈ (Met‘𝑋) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
5049ancoms 468 . . . . . . . . . . . 12 ((((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋) → (𝑀 ∈ (Met‘𝑋) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
5150impcom 445 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5251adantlr 753 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5346, 52syldan 488 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ ((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5453anassrs 683 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) ∧ 𝑤𝑌) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5521adantr 472 . . . . . . . . . 10 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))
56 fveq2 6353 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
5756oveq1d 6829 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → ((𝐹𝑥)𝑀(𝐹𝑦)) = ((𝐹𝑤)𝑀(𝐹𝑦)))
58 fveq2 6353 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
5958oveq2d 6830 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → ((𝐹𝑤)𝑀(𝐹𝑦)) = ((𝐹𝑤)𝑀(𝐹𝑢)))
60 ovex 6842 . . . . . . . . . . . . . 14 ((𝐹𝑤)𝑀(𝐹𝑢)) ∈ V
6157, 59, 13, 60ovmpt2 6962 . . . . . . . . . . . . 13 ((𝑤𝑌𝑢𝑌) → (𝑤𝑁𝑢) = ((𝐹𝑤)𝑀(𝐹𝑢)))
6261ancoms 468 . . . . . . . . . . . 12 ((𝑢𝑌𝑤𝑌) → (𝑤𝑁𝑢) = ((𝐹𝑤)𝑀(𝐹𝑢)))
6362adantlr 753 . . . . . . . . . . 11 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (𝑤𝑁𝑢) = ((𝐹𝑤)𝑀(𝐹𝑢)))
6418oveq2d 6830 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((𝐹𝑤)𝑀(𝐹𝑦)) = ((𝐹𝑤)𝑀(𝐹𝑣)))
65 ovex 6842 . . . . . . . . . . . . . 14 ((𝐹𝑤)𝑀(𝐹𝑣)) ∈ V
6657, 64, 13, 65ovmpt2 6962 . . . . . . . . . . . . 13 ((𝑤𝑌𝑣𝑌) → (𝑤𝑁𝑣) = ((𝐹𝑤)𝑀(𝐹𝑣)))
6766ancoms 468 . . . . . . . . . . . 12 ((𝑣𝑌𝑤𝑌) → (𝑤𝑁𝑣) = ((𝐹𝑤)𝑀(𝐹𝑣)))
6867adantll 752 . . . . . . . . . . 11 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (𝑤𝑁𝑣) = ((𝐹𝑤)𝑀(𝐹𝑣)))
6963, 68oveq12d 6832 . . . . . . . . . 10 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) = (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
7055, 69breq12d 4817 . . . . . . . . 9 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → ((𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
7170adantll 752 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) ∧ 𝑤𝑌) → ((𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
7254, 71mpbird 247 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) ∧ 𝑤𝑌) → (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))
7372ralrimiva 3104 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))
7440, 73jca 555 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))
75743adantl1 1172 . . . 4 (((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))
7675ex 449 . . 3 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ((𝑢𝑌𝑣𝑌) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))))
7776ralrimivv 3108 . 2 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ∀𝑢𝑌𝑣𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))
78 ismet 22349 . . 3 (𝑌𝐴 → (𝑁 ∈ (Met‘𝑌) ↔ (𝑁:(𝑌 × 𝑌)⟶ℝ ∧ ∀𝑢𝑌𝑣𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))))
79783ad2ant1 1128 . 2 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → (𝑁 ∈ (Met‘𝑌) ↔ (𝑁:(𝑌 × 𝑌)⟶ℝ ∧ ∀𝑢𝑌𝑣𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))))
8015, 77, 79mpbir2and 995 1 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → 𝑁 ∈ (Met‘𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050   class class class wbr 4804   × cxp 5264  ⟶wf 6045  –1-1→wf1 6046  –1-1-onto→wf1o 6048  ‘cfv 6049  (class class class)co 6814   ↦ cmpt2 6816  ℝcr 10147  0cc0 10148   + caddc 10151   ≤ cle 10287  Metcme 19954 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-mulcl 10210  ax-i2m1 10216 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-xadd 12160  df-xmet 19961  df-met 19962 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator