![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsre | Structured version Visualization version GIF version |
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsre | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4074 | . . 3 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝑆) | |
2 | metxmet 22340 | . . . . . . . . 9 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 22852 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 2, 4 | sylan 489 | . . . . . . . 8 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
6 | 5 | adantr 472 | . . . . . . 7 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶(0[,]+∞)) |
7 | ffn 6206 | . . . . . . 7 ⊢ (𝐹:𝑋⟶(0[,]+∞) → 𝐹 Fn 𝑋) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹 Fn 𝑋) |
9 | 5 | adantr 472 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐹:𝑋⟶(0[,]+∞)) |
10 | simprr 813 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) | |
11 | 9, 10 | ffvelrnd 6523 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
12 | elxrge0 12474 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑤))) | |
13 | 12 | simplbi 478 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → (𝐹‘𝑤) ∈ ℝ*) |
14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ*) |
15 | simpll 807 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
16 | simpr 479 | . . . . . . . . . . . 12 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
17 | 16 | sselda 3744 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
18 | 17 | adantrr 755 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
19 | metcl 22338 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧𝐷𝑤) ∈ ℝ) | |
20 | 15, 18, 10, 19 | syl3anc 1477 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝑧𝐷𝑤) ∈ ℝ) |
21 | 12 | simprbi 483 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
22 | 11, 21 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 0 ≤ (𝐹‘𝑤)) |
23 | 3 | metdsle 22856 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
24 | 2, 23 | sylanl1 685 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
25 | xrrege0 12198 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹‘𝑤) ∈ ℝ) | |
26 | 14, 20, 22, 24, 25 | syl22anc 1478 | . . . . . . . 8 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ) |
27 | 26 | anassrs 683 | . . . . . . 7 ⊢ ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ℝ) |
28 | 27 | ralrimiva 3104 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ) |
29 | ffnfv 6551 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ)) | |
30 | 8, 28, 29 | sylanbrc 701 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶ℝ) |
31 | 30 | ex 449 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
32 | 31 | exlimdv 2010 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑧 𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
33 | 1, 32 | syl5bi 232 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ)) |
34 | 33 | 3impia 1110 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 ↦ cmpt 4881 ran crn 5267 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 infcinf 8512 ℝcr 10127 0cc0 10128 +∞cpnf 10263 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 [,]cicc 12371 ∞Metcxmt 19933 Metcme 19934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-er 7911 df-ec 7913 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-2 11271 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-icc 12375 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 |
This theorem is referenced by: metdscn2 22861 lebnumlem1 22961 lebnumlem3 22963 |
Copyright terms: Public domain | W3C validator |