MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndci Structured version   Visualization version   GIF version

Theorem met2ndci 22528
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndci ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2nd𝜔)

Proof of Theorem met2ndci
Dummy variables 𝑛 𝑟 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 22446 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 472 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top)
4 simpll 807 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
5 simplr1 1261 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝑋)
6 simprr 813 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
75, 6sseldd 3745 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝑋)
8 simprl 811 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ)
98nnrpd 12063 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ+)
109rpreccld 12075 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ+)
1110rpxrd 12066 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ*)
121blopn 22506 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
134, 7, 11, 12syl3anc 1477 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
1413ralrimivva 3109 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
15 eqid 2760 . . . . . 6 (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))
1615fmpt2 7405 . . . . 5 (∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1714, 16sylib 208 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
18 frn 6214 . . . 4 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽 → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
1917, 18syl 17 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
20 simpll 807 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝐷 ∈ (∞Met‘𝑋))
21 simprl 811 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑢𝐽)
22 simprr 813 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑧𝑢)
231mopni2 22499 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑧𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
2420, 21, 22, 23syl3anc 1477 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
25 simprl 811 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
2625rphalfcld 12077 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈ ℝ+)
27 elrp 12027 . . . . . . . 8 ((𝑟 / 2) ∈ ℝ+ ↔ ((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)))
28 nnrecl 11482 . . . . . . . 8 (((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2927, 28sylbi 207 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
3026, 29syl 17 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
313ad2antrr 764 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top)
32 simpr1 1234 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴𝑋)
3332ad2antrr 764 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴𝑋)
341mopnuni 22447 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3534ad3antrrr 768 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = 𝐽)
3633, 35sseqtrd 3782 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 𝐽)
37 simplrr 820 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑢)
38 simplrl 819 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢𝐽)
39 elunii 4593 . . . . . . . . . . . . 13 ((𝑧𝑢𝑢𝐽) → 𝑧 𝐽)
4037, 38, 39syl2anc 696 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 𝐽)
4140, 35eleqtrrd 2842 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑋)
42 simpr3 1238 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
4342ad2antrr 764 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋)
4441, 43eleqtrrd 2842 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
4520adantr 472 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
46 simprrl 823 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ)
4746nnrpd 12063 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+)
4847rpreccld 12075 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ+)
4948rpxrd 12066 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ*)
501blopn 22506 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
5145, 41, 49, 50syl3anc 1477 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
52 blcntr 22419 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
5345, 41, 48, 52syl3anc 1477 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
54 eqid 2760 . . . . . . . . . . 11 𝐽 = 𝐽
5554clsndisj 21081 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
5631, 36, 44, 51, 53, 55syl32anc 1485 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
57 n0 4074 . . . . . . . . 9 (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5856, 57sylib 208 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5946adantr 472 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ)
60 inss2 3977 . . . . . . . . . . . 12 ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ⊆ 𝐴
61 simpr 479 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
6260, 61sseldi 3742 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝐴)
63 eqidd 2761 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
64 oveq2 6821 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛))
6564oveq2d 6829 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛)))
6665eqeq2d 2770 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛))))
67 oveq1 6820 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
6867eqeq2d 2770 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))))
6966, 68rspc2ev 3463 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑡𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7059, 62, 63, 69syl3anc 1477 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
71 ovex 6841 . . . . . . . . . . 11 (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V
72 eqeq1 2764 . . . . . . . . . . . 12 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
73722rexbidv 3195 . . . . . . . . . . 11 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
7415rnmpt2 6935 . . . . . . . . . . 11 ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))}
7571, 73, 74elab2 3494 . . . . . . . . . 10 ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7670, 75sylibr 224 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
77 inss1 3976 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ⊆ (𝑧(ball‘𝐷)(1 / 𝑛))
7877, 61sseldi 3742 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
7945adantr 472 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
8049adantr 472 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈ ℝ*)
8141adantr 472 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧𝑋)
8233adantr 472 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴𝑋)
8382, 62sseldd 3745 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝑋)
84 blcom 22400 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧𝑋𝑡𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8579, 80, 81, 83, 84syl22anc 1478 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8678, 85mpbid 222 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))
87 simprll 821 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
8887adantr 472 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+)
8988rphalfcld 12077 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ+)
9089rpxrd 12066 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ*)
91 simprrr 824 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2))
9287rphalfcld 12077 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
93 rpre 12032 . . . . . . . . . . . . . . 15 ((1 / 𝑛) ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
94 rpre 12032 . . . . . . . . . . . . . . 15 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
95 ltle 10318 . . . . . . . . . . . . . . 15 (((1 / 𝑛) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9693, 94, 95syl2an 495 . . . . . . . . . . . . . 14 (((1 / 𝑛) ∈ ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9748, 92, 96syl2anc 696 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9891, 97mpd 15 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2))
9998adantr 472 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2))
100 ssbl 22429 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
10179, 83, 80, 90, 99, 100syl221anc 1488 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
10288rpred 12065 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ)
103101, 86sseldd 3745 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))
104 blhalf 22411 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
10579, 83, 102, 103, 104syl22anc 1478 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
106 simprlr 822 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
107106adantr 472 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
108105, 107sstrd 3754 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢)
109101, 108sstrd 3754 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)
110 eleq2 2828 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧𝑤𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
111 sseq1 3767 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))
112110, 111anbi12d 749 . . . . . . . . . 10 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧𝑤𝑤𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)))
113112rspcev 3449 . . . . . . . . 9 (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11476, 86, 109, 113syl12anc 1475 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11558, 114exlimddv 2012 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
116115anassrs 683 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11730, 116rexlimddv 3173 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11824, 117rexlimddv 3173 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
119118ralrimivva 3109 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
120 basgen2 20995 . . 3 ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
1213, 19, 119, 120syl3anc 1477 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
122121, 3eqeltrd 2839 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
123 tgclb 20976 . . . 4 (ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
124122, 123sylibr 224 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases)
125 omelon 8716 . . . . . 6 ω ∈ On
126 simpr2 1236 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω)
127 nnex 11218 . . . . . . . . 9 ℕ ∈ V
128127xpdom2 8220 . . . . . . . 8 (𝐴 ≼ ω → (ℕ × 𝐴) ≼ (ℕ × ω))
129126, 128syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ × ω))
130 nnenom 12973 . . . . . . . . 9 ℕ ≈ ω
131 omex 8713 . . . . . . . . . 10 ω ∈ V
132131enref 8154 . . . . . . . . 9 ω ≈ ω
133 xpen 8288 . . . . . . . . 9 ((ℕ ≈ ω ∧ ω ≈ ω) → (ℕ × ω) ≈ (ω × ω))
134130, 132, 133mp2an 710 . . . . . . . 8 (ℕ × ω) ≈ (ω × ω)
135 xpomen 9028 . . . . . . . 8 (ω × ω) ≈ ω
136134, 135entri 8175 . . . . . . 7 (ℕ × ω) ≈ ω
137 domentr 8180 . . . . . . 7 (((ℕ × 𝐴) ≼ (ℕ × ω) ∧ (ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼ ω)
138129, 136, 137sylancl 697 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω)
139 ondomen 9050 . . . . . 6 ((ω ∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ × 𝐴) ∈ dom card)
140125, 138, 139sylancr 698 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card)
141 ffn 6206 . . . . . . 7 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽 → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
14217, 141syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
143 dffn4 6282 . . . . . 6 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
144142, 143sylib 208 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
145 fodomnum 9070 . . . . 5 ((ℕ × 𝐴) ∈ dom card → ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)))
146140, 144, 145sylc 65 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))
147 domtr 8174 . . . 4 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
148146, 138, 147syl2anc 696 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
149 2ndci 21453 . . 3 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2nd𝜔)
150124, 148, 149syl2anc 696 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2nd𝜔)
151121, 150eqeltrrd 2840 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2nd𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  cin 3714  wss 3715  c0 4058   cuni 4588   class class class wbr 4804   × cxp 5264  dom cdm 5266  ran crn 5267  Oncon0 5884   Fn wfn 6044  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6813  cmpt2 6815  ωcom 7230  cen 8118  cdom 8119  cardccrd 8951  cr 10127  0cc0 10128  1c1 10129  *cxr 10265   < clt 10266  cle 10267   / cdiv 10876  cn 11212  2c2 11262  +crp 12025  topGenctg 16300  ∞Metcxmt 19933  ballcbl 19935  MetOpencmopn 19938  Topctop 20900  TopBasesctb 20951  clsccl 21024  2nd𝜔c2ndc 21443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-2ndc 21445
This theorem is referenced by:  met2ndc  22529
  Copyright terms: Public domain W3C validator