MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertenslem2 Structured version   Visualization version   GIF version

Theorem mertenslem2 14661
Description: Lemma for mertens 14662. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
Assertion
Ref Expression
mertenslem2 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝐴,𝑘,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑇,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝜑,𝑛,𝑠
Allowed substitution hints:   𝜓(𝑠)   𝐴(𝑧,𝑗)   𝐵(𝑘)   𝑇(𝑠)   𝐹(𝑧,𝑘,𝑠)   𝐻(𝑧,𝑗,𝑛,𝑠)

Proof of Theorem mertenslem2
Dummy variables 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11761 . . 3 ℕ = (ℤ‘1)
2 1zzd 11446 . . 3 (𝜑 → 1 ∈ ℤ)
3 mertens.9 . . . . 5 (𝜑𝐸 ∈ ℝ+)
43rphalfcld 11922 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5 nn0uz 11760 . . . . . 6 0 = (ℤ‘0)
6 0zd 11427 . . . . . 6 (𝜑 → 0 ∈ ℤ)
7 eqidd 2652 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
8 mertens.2 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
9 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
109abscld 14219 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrd 2730 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
12 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
135, 6, 7, 11, 12isumrecl 14540 . . . . 5 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
149absge0d 14227 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
1514, 8breqtrrd 4713 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
165, 6, 7, 11, 12, 15isumge0 14541 . . . . 5 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
1713, 16ge0p1rpd 11940 . . . 4 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
184, 17rpdivcld 11927 . . 3 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
19 eqidd 2652 . . 3 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚))
20 mertens.4 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
21 mertens.5 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
22 mertens.8 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
235, 6, 20, 21, 22isumclim2 14533 . . 3 (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0 𝐵)
241, 2, 18, 19, 23climi2 14286 . 2 (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
25 eluznn 11796 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠)) → 𝑚 ∈ ℕ)
2620, 21eqeltrd 2730 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
275, 6, 26serf 12869 . . . . . . . . . . . 12 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ)
28 nnnn0 11337 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
29 ffvelrn 6397 . . . . . . . . . . . 12 ((seq0( + , 𝐺):ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
3027, 28, 29syl2an 493 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
315, 6, 20, 21, 22isumcl 14536 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3330, 32abssubd 14236 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))))
34 eqid 2651 . . . . . . . . . . . . . 14 (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑚 + 1))
3528adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
36 peano2nn0 11371 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ0)
3837nn0zd 11518 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
39 simpll 805 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝜑)
40 eluznn0 11795 . . . . . . . . . . . . . . . 16 (((𝑚 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4137, 40sylan 487 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4239, 41, 20syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝐺𝑘) = 𝐵)
4339, 41, 21syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝐵 ∈ ℂ)
4422adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
4526adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
465, 37, 45iserex 14431 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ))
4744, 46mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ )
4834, 38, 42, 43, 47isumcl 14536 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵 ∈ ℂ)
4930, 48pncan2d 10432 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
5020adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
5121adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
525, 34, 37, 50, 51, 44isumsplit 14616 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
53 nncn 11066 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5453adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
55 ax-1cn 10032 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
56 pncan 10325 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
5754, 55, 56sylancl 695 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚)
5857oveq2d 6706 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
5958sumeq1d 14475 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵)
60 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → 𝜑)
61 elfznn0 12471 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0)
6260, 61, 20syl2an 493 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑚)) → (𝐺𝑘) = 𝐵)
6335, 5syl6eleq 2740 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘0))
6460, 61, 21syl2an 493 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑚)) → 𝐵 ∈ ℂ)
6562, 63, 64fsumser 14505 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚))
6659, 65eqtrd 2685 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚))
6766oveq1d 6705 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6852, 67eqtrd 2685 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6968oveq1d 6705 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)))
7042sumeq2dv 14477 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
7149, 69, 703eqtr4d 2695 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘))
7271fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7333, 72eqtrd 2685 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7473breq1d 4695 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7525, 74sylan2 490 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠))) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7675anassrs 681 . . . . . 6 (((𝜑𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑠)) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7776ralbidva 3014 . . . . 5 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
78 oveq1 6697 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7978fveq2d 6233 . . . . . . . . 9 (𝑚 = 𝑛 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑛 + 1)))
8079sumeq1d 14475 . . . . . . . 8 (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
8180fveq2d 6233 . . . . . . 7 (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8281breq1d 4695 . . . . . 6 (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
8382cbvralv 3201 . . . . 5 (∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
8477, 83syl6bb 276 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
85 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
86 0zd 11427 . . . . . . . . 9 ((𝜑𝜓) → 0 ∈ ℤ)
874adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → (𝐸 / 2) ∈ ℝ+)
8885simplbi 475 . . . . . . . . . . . . 13 (𝜓𝑠 ∈ ℕ)
8988adantl 481 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑠 ∈ ℕ)
9089nnrpd 11908 . . . . . . . . . . 11 ((𝜑𝜓) → 𝑠 ∈ ℝ+)
9187, 90rpdivcld 11927 . . . . . . . . . 10 ((𝜑𝜓) → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
92 mertens.10 . . . . . . . . . . . . 13 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
93 eqid 2651 . . . . . . . . . . . . . . . . . 18 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
94 elfznn0 12471 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0)
9594adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0)
96 peano2nn0 11371 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
9795, 96syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℕ0)
9897nn0zd 11518 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ)
99 eqidd 2652 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
100 simplll 813 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
101 eluznn0 11795 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
10297, 101sylan 487 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
103100, 102, 26syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
10422ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
105 simpll 805 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝜑)
106105, 26sylan 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1075, 97, 106iserex 14431 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
108104, 107mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
10993, 98, 99, 103, 108isumcl 14536 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
110109abscld 14219 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
111 eleq1a 2725 . . . . . . . . . . . . . . . 16 ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) → 𝑧 ∈ ℝ))
112110, 111syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) → 𝑧 ∈ ℝ))
113112rexlimdva 3060 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) → 𝑧 ∈ ℝ))
114113abssdv 3709 . . . . . . . . . . . . 13 ((𝜑𝜓) → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} ⊆ ℝ)
11592, 114syl5eqss 3682 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑇 ⊆ ℝ)
116 fzfid 12812 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (0...(𝑠 − 1)) ∈ Fin)
117 abrexfi 8307 . . . . . . . . . . . . . . 15 ((0...(𝑠 − 1)) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} ∈ Fin)
118116, 117syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜓) → {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} ∈ Fin)
11992, 118syl5eqel 2734 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑇 ∈ Fin)
120 nnm1nn0 11372 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
12189, 120syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝑠 − 1) ∈ ℕ0)
122121, 5syl6eleq 2740 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑠 − 1) ∈ (ℤ‘0))
123 eluzfz1 12386 . . . . . . . . . . . . . . . . 17 ((𝑠 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑠 − 1)))
124122, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 0 ∈ (0...(𝑠 − 1)))
125 nnnn0 11337 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
126125, 20sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = 𝐵)
127126sumeq2dv 14477 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
128127adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
129128fveq2d 6233 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵))
130129eqcomd 2657 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
131 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 0 → (𝑛 + 1) = (0 + 1))
132 0p1e1 11170 . . . . . . . . . . . . . . . . . . . . . . 23 (0 + 1) = 1
133131, 132syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 0 → (𝑛 + 1) = 1)
134133fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = (ℤ‘1))
135134, 1syl6eqr 2703 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = ℕ)
136135sumeq1d 14475 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ ℕ (𝐺𝑘))
137136fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
138137eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))))
139138rspcev 3340 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
140124, 130, 139syl2anc 694 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
141 fvex 6239 . . . . . . . . . . . . . . . 16 (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ V
142 eqeq1 2655 . . . . . . . . . . . . . . . . 17 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
143142rexbidv 3081 . . . . . . . . . . . . . . . 16 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
144141, 143, 92elab2 3386 . . . . . . . . . . . . . . 15 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
145140, 144sylibr 224 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇)
146 ne0i 3954 . . . . . . . . . . . . . 14 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇𝑇 ≠ ∅)
147145, 146syl 17 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑇 ≠ ∅)
148 ltso 10156 . . . . . . . . . . . . . 14 < Or ℝ
149 fisupcl 8416 . . . . . . . . . . . . . 14 (( < Or ℝ ∧ (𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ)) → sup(𝑇, ℝ, < ) ∈ 𝑇)
150148, 149mpan 706 . . . . . . . . . . . . 13 ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ) → sup(𝑇, ℝ, < ) ∈ 𝑇)
151119, 147, 115, 150syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝜓) → sup(𝑇, ℝ, < ) ∈ 𝑇)
152115, 151sseldd 3637 . . . . . . . . . . 11 ((𝜑𝜓) → sup(𝑇, ℝ, < ) ∈ ℝ)
153 0red 10079 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ∈ ℝ)
154125, 21sylan2 490 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
155 1nn0 11346 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
156155a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
1575, 156, 26iserex 14431 . . . . . . . . . . . . . . . 16 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
15822, 157mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
1591, 2, 126, 154, 158isumcl 14536 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
160159adantr 480 . . . . . . . . . . . . 13 ((𝜑𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
161160abscld 14219 . . . . . . . . . . . 12 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ)
162160absge0d 14227 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵))
163 fimaxre2 11007 . . . . . . . . . . . . . . 15 ((𝑇 ⊆ ℝ ∧ 𝑇 ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)
164115, 119, 163syl2anc 694 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)
165115, 147, 1643jca 1261 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧))
166 suprub 11022 . . . . . . . . . . . . 13 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ sup(𝑇, ℝ, < ))
167165, 145, 166syl2anc 694 . . . . . . . . . . . 12 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ sup(𝑇, ℝ, < ))
168153, 161, 152, 162, 167letrd 10232 . . . . . . . . . . 11 ((𝜑𝜓) → 0 ≤ sup(𝑇, ℝ, < ))
169152, 168ge0p1rpd 11940 . . . . . . . . . 10 ((𝜑𝜓) → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ+)
17091, 169rpdivcld 11927 . . . . . . . . 9 ((𝜑𝜓) → (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ∈ ℝ+)
171 fveq2 6229 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
172 eqid 2651 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))
173 fvex 6239 . . . . . . . . . . 11 (𝐾𝑚) ∈ V
174171, 172, 173fvmpt 6321 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
175174adantl 481 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
176 nn0ex 11336 . . . . . . . . . . . . 13 0 ∈ V
177176mptex 6527 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V
178177a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V)
179 elnn0uz 11763 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ‘0))
180 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
181 fvex 6239 . . . . . . . . . . . . . . . 16 (𝐾𝑗) ∈ V
182180, 172, 181fvmpt 6321 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
183182adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
184179, 183sylan2br 492 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
1856, 184seqfeq 12866 . . . . . . . . . . . 12 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) = seq0( + , 𝐾))
186185, 12eqeltrd 2730 . . . . . . . . . . 11 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) ∈ dom ⇝ )
187183, 8eqtrd 2685 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (abs‘𝐴))
188187, 10eqeltrd 2730 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℝ)
189188recnd 10106 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℂ)
1905, 6, 178, 186, 189serf0 14455 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
191190adantr 480 . . . . . . . . 9 ((𝜑𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
1925, 86, 170, 175, 191climi0 14287 . . . . . . . 8 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
193 simplll 813 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝜑)
194 eluznn0 11795 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
195194adantll 750 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
19611, 15absidd 14205 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐾𝑗)) = (𝐾𝑗))
197196ralrimiva 2995 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗))
198 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
199198fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (abs‘(𝐾𝑗)) = (abs‘(𝐾𝑚)))
200199, 198eqeq12d 2666 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((abs‘(𝐾𝑗)) = (𝐾𝑗) ↔ (abs‘(𝐾𝑚)) = (𝐾𝑚)))
201200rspccva 3339 . . . . . . . . . . . . . . 15 ((∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗) ∧ 𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
202197, 201sylan 487 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
203193, 195, 202syl2anc 694 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
204203breq1d 4695 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
205204ralbidva 3014 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
206171breq1d 4695 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
207206cbvralv 3201 . . . . . . . . . . 11 (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))
208205, 207syl6bbr 278 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
209 simpll 805 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → 𝜑)
210 mertens.1 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
211209, 210sylan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
212209, 8sylan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
213209, 9sylan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
214209, 20sylan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
215209, 21sylan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
216 mertens.6 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
217209, 216sylan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
21812ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → seq0( + , 𝐾) ∈ dom ⇝ )
21922ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → seq0( + , 𝐺) ∈ dom ⇝ )
2203ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → 𝐸 ∈ ℝ+)
221207anbi2i 730 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))) ↔ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1))))
222221anbi2i 730 . . . . . . . . . . . . . 14 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
223222biimpi 206 . . . . . . . . . . . . 13 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
224223adantll 750 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))))
225168, 165jca 553 . . . . . . . . . . . . 13 ((𝜑𝜓) → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
226225adantr 480 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → (0 ≤ sup(𝑇, ℝ, < ) ∧ (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑇 𝑤𝑧)))
227211, 212, 213, 214, 215, 217, 218, 219, 220, 92, 85, 224, 226mertenslem1 14660 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
228227expr 642 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
229208, 228sylbid 230 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
230229rexlimdva 3060 . . . . . . . 8 ((𝜑𝜓) → (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (sup(𝑇, ℝ, < ) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
231192, 230mpd 15 . . . . . . 7 ((𝜑𝜓) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
232231ex 449 . . . . . 6 (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
23385, 232syl5bir 233 . . . . 5 (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
234233expdimp 452 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
23584, 234sylbid 230 . . 3 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
236235rexlimdva 3060 . 2 (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
23724, 236mpd 15 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  cmpt 4762   Or wor 5063  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cuz 11725  +crp 11870  ...cfz 12364  seqcseq 12841  abscabs 14018  cli 14259  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461
This theorem is referenced by:  mertens  14662
  Copyright terms: Public domain W3C validator