Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvsca Structured version   Visualization version   GIF version

Theorem mendvsca 38287
Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
mendvsca.w = ( ·𝑠𝐴)
Assertion
Ref Expression
mendvsca ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = ((𝐸 × {𝑋}) ∘𝑓 · 𝑌))

Proof of Theorem mendvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4323 . . . 4 (𝑥 = 𝑋 → {𝑥} = {𝑋})
21xpeq2d 5278 . . 3 (𝑥 = 𝑋 → (𝐸 × {𝑥}) = (𝐸 × {𝑋}))
3 id 22 . . 3 (𝑦 = 𝑌𝑦 = 𝑌)
42, 3oveqan12d 6810 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐸 × {𝑥}) ∘𝑓 · 𝑦) = ((𝐸 × {𝑋}) ∘𝑓 · 𝑌))
5 mendvsca.w . . 3 = ( ·𝑠𝐴)
6 mendvscafval.a . . . 4 𝐴 = (MEndo‘𝑀)
7 mendvscafval.v . . . 4 · = ( ·𝑠𝑀)
8 mendvscafval.b . . . 4 𝐵 = (Base‘𝐴)
9 mendvscafval.s . . . 4 𝑆 = (Scalar‘𝑀)
10 mendvscafval.k . . . 4 𝐾 = (Base‘𝑆)
11 mendvscafval.e . . . 4 𝐸 = (Base‘𝑀)
126, 7, 8, 9, 10, 11mendvscafval 38286 . . 3 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
135, 12eqtri 2791 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘𝑓 · 𝑦))
14 ovex 6821 . 2 ((𝐸 × {𝑋}) ∘𝑓 · 𝑌) ∈ V
154, 13, 14ovmpt2a 6936 1 ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = ((𝐸 × {𝑋}) ∘𝑓 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1629  wcel 2143  {csn 4313   × cxp 5246  cfv 6030  (class class class)co 6791  cmpt2 6793  𝑓 cof 7040  Basecbs 16070  Scalarcsca 16158   ·𝑠 cvsca 16159  MEndocmend 38271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-n0 11493  df-z 11578  df-uz 11888  df-fz 12533  df-struct 16072  df-ndx 16073  df-slot 16074  df-base 16076  df-plusg 16168  df-mulr 16169  df-sca 16171  df-vsca 16172  df-lmhm 19241  df-mend 38272
This theorem is referenced by:  mendlmod  38289  mendassa  38290
  Copyright terms: Public domain W3C validator