Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendmulrfval Structured version   Visualization version   GIF version

Theorem mendmulrfval 38283
 Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendmulrfval.a 𝐴 = (MEndo‘𝑀)
mendmulrfval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
mendmulrfval (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem mendmulrfval
StepHypRef Expression
1 mendmulrfval.a . . . . 5 𝐴 = (MEndo‘𝑀)
2 mendmulrfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
31mendbas 38280 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
42, 3eqtr4i 2796 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
5 eqid 2771 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
6 eqid 2771 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
7 eqid 2771 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqid 2771 . . . . . 6 (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
94, 5, 6, 7, 8mendval 38279 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩}))
101, 9syl5eq 2817 . . . 4 (𝑀 ∈ V → 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩}))
1110fveq2d 6337 . . 3 (𝑀 ∈ V → (.r𝐴) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})))
122fvexi 6345 . . . . 5 𝐵 ∈ V
1312, 12mpt2ex 7401 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) ∈ V
14 eqid 2771 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})
1514algmulr 38276 . . . 4 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})))
1613, 15mp1i 13 . . 3 (𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))⟩})))
1711, 16eqtr4d 2808 . 2 (𝑀 ∈ V → (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
18 fvprc 6327 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
191, 18syl5eq 2817 . . . . 5 𝑀 ∈ V → 𝐴 = ∅)
2019fveq2d 6337 . . . 4 𝑀 ∈ V → (.r𝐴) = (.r‘∅))
21 df-mulr 16163 . . . . 5 .r = Slot 3
2221str0 16118 . . . 4 ∅ = (.r‘∅)
2320, 22syl6eqr 2823 . . 3 𝑀 ∈ V → (.r𝐴) = ∅)
2419fveq2d 6337 . . . . . . 7 𝑀 ∈ V → (Base‘𝐴) = (Base‘∅))
252, 24syl5eq 2817 . . . . . 6 𝑀 ∈ V → 𝐵 = (Base‘∅))
26 base0 16119 . . . . . 6 ∅ = (Base‘∅)
2725, 26syl6eqr 2823 . . . . 5 𝑀 ∈ V → 𝐵 = ∅)
28 mpt2eq12 6866 . . . . . 6 ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝑦)))
2928anidms 556 . . . . 5 (𝐵 = ∅ → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝑦)))
3027, 29syl 17 . . . 4 𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝑦)))
31 mpt20 6876 . . . 4 (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥𝑦)) = ∅
3230, 31syl6eq 2821 . . 3 𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = ∅)
3323, 32eqtr4d 2808 . 2 𝑀 ∈ V → (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
3417, 33pm2.61i 176 1 (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ∪ cun 3721  ∅c0 4063  {csn 4317  {cpr 4319  {ctp 4321  ⟨cop 4323   × cxp 5248   ∘ ccom 5254  ‘cfv 6030  (class class class)co 6796   ↦ cmpt2 6798   ∘𝑓 cof 7046  3c3 11277  ndxcnx 16061  Basecbs 16064  +gcplusg 16149  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153   LMHom clmhm 19232  MEndocmend 38271 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-lmhm 19235  df-mend 38272 This theorem is referenced by:  mendmulr  38284
 Copyright terms: Public domain W3C validator