MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval Structured version   Visualization version   GIF version

Theorem meetfval 17062
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 17063 first to reduce net proof size (existence part)?
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetfval (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3243 . 2 (𝐾𝑉𝐾 ∈ V)
2 meetfval.m . . 3 = (meet‘𝐾)
3 fvex 6239 . . . . . . 7 (Base‘𝐾) ∈ V
4 moeq 3415 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
54a1i 11 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))
6 eqid 2651 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}
73, 3, 5, 6oprabex 7198 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V
87a1i 11 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V)
9 meetfval.u . . . . . . . . . . . 12 𝐺 = (glb‘𝐾)
109glbfun 17040 . . . . . . . . . . 11 Fun 𝐺
11 funbrfv2b 6279 . . . . . . . . . . 11 (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)))
1210, 11ax-mp 5 . . . . . . . . . 10 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))
13 eqid 2651 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2651 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
15 simpl 472 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → 𝐾 ∈ V)
16 simpr 476 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ∈ dom 𝐺)
1713, 14, 9, 15, 16glbelss 17042 . . . . . . . . . . . . 13 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
1817ex 449 . . . . . . . . . . . 12 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → {𝑥, 𝑦} ⊆ (Base‘𝐾)))
19 vex 3234 . . . . . . . . . . . . 13 𝑥 ∈ V
20 vex 3234 . . . . . . . . . . . . 13 𝑦 ∈ V
2119, 20prss 4383 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
2218, 21syl6ibr 242 . . . . . . . . . . 11 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
23 eqcom 2658 . . . . . . . . . . . . 13 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2423biimpi 206 . . . . . . . . . . . 12 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2524a1i 11 . . . . . . . . . . 11 (𝐾 ∈ V → ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦})))
2622, 25anim12d 585 . . . . . . . . . 10 (𝐾 ∈ V → (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2712, 26syl5bi 232 . . . . . . . . 9 (𝐾 ∈ V → ({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2827alrimiv 1895 . . . . . . . 8 (𝐾 ∈ V → ∀𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2928alrimiv 1895 . . . . . . 7 (𝐾 ∈ V → ∀𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
3029alrimiv 1895 . . . . . 6 (𝐾 ∈ V → ∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
31 ssoprab2 6753 . . . . . 6 (∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
3230, 31syl 17 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
338, 32ssexd 4838 . . . 4 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V)
34 fveq2 6229 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
3534, 9syl6eqr 2703 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
3635breqd 4696 . . . . . 6 (𝑝 = 𝐾 → ({𝑥, 𝑦} (glb‘𝑝)𝑧 ↔ {𝑥, 𝑦}𝐺𝑧))
3736oprabbidv 6751 . . . . 5 (𝑝 = 𝐾 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
38 df-meet 17024 . . . . 5 meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
3937, 38fvmptg 6319 . . . 4 ((𝐾 ∈ V ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V) → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
4033, 39mpdan 703 . . 3 (𝐾 ∈ V → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
412, 40syl5eq 2697 . 2 (𝐾 ∈ V → = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
421, 41syl 17 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  ∃*wmo 2499  Vcvv 3231  wss 3607  {cpr 4212   class class class wbr 4685  dom cdm 5143  Fun wfun 5920  cfv 5926  {coprab 6691  Basecbs 15904  lecple 15995  glbcglb 16990  meetcmee 16992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-oprab 6694  df-glb 17022  df-meet 17024
This theorem is referenced by:  meetfval2  17063  meet0  17184  odumeet  17187  odujoin  17189
  Copyright terms: Public domain W3C validator