![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetcomALT | Structured version Visualization version GIF version |
Description: The meet of a poset commutes. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
meetcom.b | ⊢ 𝐵 = (Base‘𝐾) |
meetcom.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
meetcomALT | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4411 | . . . 4 ⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | |
2 | 1 | fveq2i 6356 | . . 3 ⊢ ((glb‘𝐾)‘{𝑌, 𝑋}) = ((glb‘𝐾)‘{𝑋, 𝑌}) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((glb‘𝐾)‘{𝑌, 𝑋}) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
4 | eqid 2760 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
5 | meetcom.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
6 | simp1 1131 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ 𝑉) | |
7 | simp3 1133 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
8 | simp2 1132 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 4, 5, 6, 7, 8 | meetval 17240 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∧ 𝑋) = ((glb‘𝐾)‘{𝑌, 𝑋})) |
10 | 4, 5, 6, 8, 7 | meetval 17240 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
11 | 3, 9, 10 | 3eqtr4rd 2805 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {cpr 4323 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 glbcglb 17164 meetcmee 17166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-glb 17196 df-meet 17198 |
This theorem is referenced by: meetcom 17253 |
Copyright terms: Public domain | W3C validator |