Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measxun2 Structured version   Visualization version   GIF version

Theorem measxun2 30603
 Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
measxun2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐴) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))

Proof of Theorem measxun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1131 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝑀 ∈ (measures‘𝑆))
2 simp2r 1243 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐵𝑆)
3 measbase 30590 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
41, 3syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝑆 ran sigAlgebra)
5 simp2l 1242 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐴𝑆)
6 difelsiga 30526 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
74, 5, 2, 6syl3anc 1477 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐴𝐵) ∈ 𝑆)
8 prelpwi 5064 . . . 4 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆)
92, 7, 8syl2anc 696 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆)
10 prct 29822 . . . . 5 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} ≼ ω)
112, 7, 10syl2anc 696 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} ≼ ω)
12 simp3 1133 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐵𝐴)
13 disjdifprg2 29717 . . . . . 6 (𝐴𝑆Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
14 prcom 4411 . . . . . . . . 9 {(𝐴𝐵), 𝐵} = {𝐵, (𝐴𝐵)}
15 dfss 3730 . . . . . . . . . . . 12 (𝐵𝐴𝐵 = (𝐵𝐴))
1615biimpi 206 . . . . . . . . . . 11 (𝐵𝐴𝐵 = (𝐵𝐴))
17 incom 3948 . . . . . . . . . . 11 (𝐵𝐴) = (𝐴𝐵)
1816, 17syl6eq 2810 . . . . . . . . . 10 (𝐵𝐴𝐵 = (𝐴𝐵))
1918preq2d 4419 . . . . . . . . 9 (𝐵𝐴 → {(𝐴𝐵), 𝐵} = {(𝐴𝐵), (𝐴𝐵)})
2014, 19syl5eqr 2808 . . . . . . . 8 (𝐵𝐴 → {𝐵, (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)})
2120disjeq1d 4780 . . . . . . 7 (𝐵𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥))
2221biimprd 238 . . . . . 6 (𝐵𝐴 → (Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥))
2313, 22mpan9 487 . . . . 5 ((𝐴𝑆𝐵𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)
245, 12, 23syl2anc 696 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)
2511, 24jca 555 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → ({𝐵, (𝐴𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥))
26 measvun 30602 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)) → (𝑀 {𝐵, (𝐴𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥))
271, 9, 25, 26syl3anc 1477 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥))
282, 7jca 555 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆))
29 uniprg 4602 . . . . 5 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} = (𝐵 ∪ (𝐴𝐵)))
30 undif 4193 . . . . . 6 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
3130biimpi 206 . . . . 5 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
3229, 31sylan9eq 2814 . . . 4 (((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} = 𝐴)
3332fveq2d 6357 . . 3 (((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = (𝑀𝐴))
3428, 12, 33syl2anc 696 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = (𝑀𝐴))
35 simpr 479 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
3635fveq2d 6357 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = 𝐵) → (𝑀𝑥) = (𝑀𝐵))
37 simpr 479 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = (𝐴𝐵)) → 𝑥 = (𝐴𝐵))
3837fveq2d 6357 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = (𝐴𝐵)) → (𝑀𝑥) = (𝑀‘(𝐴𝐵)))
39 measvxrge0 30598 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
401, 2, 39syl2anc 696 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
41 measvxrge0 30598 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
421, 7, 41syl2anc 696 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
43 eqimss 3798 . . . . . . . . 9 (𝐵 = (𝐴𝐵) → 𝐵 ⊆ (𝐴𝐵))
44 ssdifeq0 4195 . . . . . . . . 9 (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 = ∅)
4543, 44sylib 208 . . . . . . . 8 (𝐵 = (𝐴𝐵) → 𝐵 = ∅)
4645fveq2d 6357 . . . . . . 7 (𝐵 = (𝐴𝐵) → (𝑀𝐵) = (𝑀‘∅))
47 measvnul 30599 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
4846, 47sylan9eqr 2816 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴𝐵)) → (𝑀𝐵) = 0)
491, 48sylan 489 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝐵 = (𝐴𝐵)) → (𝑀𝐵) = 0)
5049orcd 406 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝐵 = (𝐴𝐵)) → ((𝑀𝐵) = 0 ∨ (𝑀𝐵) = +∞))
5150ex 449 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐵 = (𝐴𝐵) → ((𝑀𝐵) = 0 ∨ (𝑀𝐵) = +∞)))
5236, 38, 2, 7, 40, 42, 51esumpr2 30459 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))
5327, 34, 523eqtr3d 2802 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐴) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ∖ cdif 3712   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  𝒫 cpw 4302  {cpr 4323  ∪ cuni 4588  Disj wdisj 4772   class class class wbr 4804  ran crn 5267  ‘cfv 6049  (class class class)co 6814  ωcom 7231   ≼ cdom 8121  0cc0 10148  +∞cpnf 10283   +𝑒 cxad 12157  [,]cicc 12391  Σ*cesum 30419  sigAlgebracsiga 30500  measurescmeas 30588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-ac2 9497  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-ac 9149  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-ordt 16383  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-ps 17421  df-tsr 17422  df-plusf 17462  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-abv 19039  df-lmod 19087  df-scaf 19088  df-sra 19394  df-rgmod 19395  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-tmd 22097  df-tgp 22098  df-tsms 22151  df-trg 22184  df-xms 22346  df-ms 22347  df-tms 22348  df-nm 22608  df-ngp 22609  df-nrg 22611  df-nlm 22612  df-ii 22901  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-esum 30420  df-siga 30501  df-meas 30589 This theorem is referenced by:  measun  30604
 Copyright terms: Public domain W3C validator