Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvun Structured version   Visualization version   GIF version

Theorem measvun 30603
Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measvun ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝑀 𝐴) = Σ*𝑥𝐴(𝑀𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem measvun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp2 1132 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → 𝐴 ∈ 𝒫 𝑆)
2 measbase 30591 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
3 ismeas 30593 . . . . . 6 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))))
42, 3syl 17 . . . . 5 (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))))
54ibi 256 . . . 4 (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥))))
65simp3d 1139 . . 3 (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))
763ad2ant1 1128 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))
8 simp3 1133 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥))
9 breq1 4808 . . . . 5 (𝑦 = 𝐴 → (𝑦 ≼ ω ↔ 𝐴 ≼ ω))
10 disjeq1 4780 . . . . 5 (𝑦 = 𝐴 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝐴 𝑥))
119, 10anbi12d 749 . . . 4 (𝑦 = 𝐴 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)))
12 unieq 4597 . . . . . 6 (𝑦 = 𝐴 𝑦 = 𝐴)
1312fveq2d 6358 . . . . 5 (𝑦 = 𝐴 → (𝑀 𝑦) = (𝑀 𝐴))
14 esumeq1 30427 . . . . 5 (𝑦 = 𝐴 → Σ*𝑥𝑦(𝑀𝑥) = Σ*𝑥𝐴(𝑀𝑥))
1513, 14eqeq12d 2776 . . . 4 (𝑦 = 𝐴 → ((𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥) ↔ (𝑀 𝐴) = Σ*𝑥𝐴(𝑀𝑥)))
1611, 15imbi12d 333 . . 3 (𝑦 = 𝐴 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)) ↔ ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥) → (𝑀 𝐴) = Σ*𝑥𝐴(𝑀𝑥))))
1716rspcv 3446 . 2 (𝐴 ∈ 𝒫 𝑆 → (∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)) → ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥) → (𝑀 𝐴) = Σ*𝑥𝐴(𝑀𝑥))))
181, 7, 8, 17syl3c 66 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝑀 𝐴) = Σ*𝑥𝐴(𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  c0 4059  𝒫 cpw 4303   cuni 4589  Disj wdisj 4773   class class class wbr 4805  ran crn 5268  wf 6046  cfv 6050  (class class class)co 6815  ωcom 7232  cdom 8122  0cc0 10149  +∞cpnf 10284  [,]cicc 12392  Σ*cesum 30420  sigAlgebracsiga 30501  measurescmeas 30589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-fv 6058  df-ov 6818  df-esum 30421  df-meas 30590
This theorem is referenced by:  measxun2  30604  measvunilem  30606  measssd  30609  measres  30616  measdivcstOLD  30618  measdivcst  30619  probcun  30811  totprobd  30819
  Copyright terms: Public domain W3C validator