Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measssd Structured version   Visualization version   GIF version

Theorem measssd 30612
 Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.)
Hypotheses
Ref Expression
measssd.1 (𝜑𝑀 ∈ (measures‘𝑆))
measssd.2 (𝜑𝐴𝑆)
measssd.3 (𝜑𝐵𝑆)
measssd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
measssd (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem measssd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measssd.1 . . . . 5 (𝜑𝑀 ∈ (measures‘𝑆))
2 measbase 30594 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
31, 2syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
4 measssd.3 . . . . . 6 (𝜑𝐵𝑆)
5 measssd.2 . . . . . 6 (𝜑𝐴𝑆)
6 difelsiga 30530 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
73, 4, 5, 6syl3anc 1475 . . . . 5 (𝜑 → (𝐵𝐴) ∈ 𝑆)
8 measvxrge0 30602 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵𝐴) ∈ 𝑆) → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
91, 7, 8syl2anc 565 . . . 4 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
10 elxrge0 12487 . . . . 5 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐵𝐴)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐵𝐴))))
1110simprbi 478 . . . 4 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝐵𝐴)))
129, 11syl 17 . . 3 (𝜑 → 0 ≤ (𝑀‘(𝐵𝐴)))
13 measvxrge0 30602 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
141, 5, 13syl2anc 565 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
15 elxrge0 12487 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
1615simplbi 479 . . . . 5 ((𝑀𝐴) ∈ (0[,]+∞) → (𝑀𝐴) ∈ ℝ*)
1714, 16syl 17 . . . 4 (𝜑 → (𝑀𝐴) ∈ ℝ*)
1810simplbi 479 . . . . 5 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
199, 18syl 17 . . . 4 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
20 xraddge02 29855 . . . 4 (((𝑀𝐴) ∈ ℝ* ∧ (𝑀‘(𝐵𝐴)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐵𝐴)) → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴)))))
2117, 19, 20syl2anc 565 . . 3 (𝜑 → (0 ≤ (𝑀‘(𝐵𝐴)) → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴)))))
2212, 21mpd 15 . 2 (𝜑 → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
23 prssi 4485 . . . . . 6 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} ⊆ 𝑆)
245, 7, 23syl2anc 565 . . . . 5 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑆)
25 prex 5037 . . . . . 6 {𝐴, (𝐵𝐴)} ∈ V
2625elpw 4301 . . . . 5 ({𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑆)
2724, 26sylibr 224 . . . 4 (𝜑 → {𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆)
28 prct 29826 . . . . 5 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} ≼ ω)
295, 7, 28syl2anc 565 . . . 4 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
30 disjdifprg 29720 . . . . . 6 ((𝐴𝑆𝐵𝑆) → Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦)
315, 4, 30syl2anc 565 . . . . 5 (𝜑Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦)
32 prcom 4401 . . . . . . 7 {(𝐵𝐴), 𝐴} = {𝐴, (𝐵𝐴)}
3332a1i 11 . . . . . 6 (𝜑 → {(𝐵𝐴), 𝐴} = {𝐴, (𝐵𝐴)})
3433disjeq1d 4760 . . . . 5 (𝜑 → (Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
3531, 34mpbid 222 . . . 4 (𝜑Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
36 measvun 30606 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ {𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑀 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦))
371, 27, 29, 35, 36syl112anc 1479 . . 3 (𝜑 → (𝑀 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦))
38 uniprg 4586 . . . . . 6 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
395, 7, 38syl2anc 565 . . . . 5 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
40 measssd.4 . . . . . 6 (𝜑𝐴𝐵)
41 undif 4189 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
4240, 41sylib 208 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
4339, 42eqtrd 2804 . . . 4 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
4443fveq2d 6336 . . 3 (𝜑 → (𝑀 {𝐴, (𝐵𝐴)}) = (𝑀𝐵))
45 fveq2 6332 . . . . 5 (𝑦 = 𝐴 → (𝑀𝑦) = (𝑀𝐴))
4645adantl 467 . . . 4 ((𝜑𝑦 = 𝐴) → (𝑀𝑦) = (𝑀𝐴))
47 fveq2 6332 . . . . 5 (𝑦 = (𝐵𝐴) → (𝑀𝑦) = (𝑀‘(𝐵𝐴)))
4847adantl 467 . . . 4 ((𝜑𝑦 = (𝐵𝐴)) → (𝑀𝑦) = (𝑀‘(𝐵𝐴)))
49 eqimss 3804 . . . . . . . . . 10 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
50 ssdifeq0 4191 . . . . . . . . . 10 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
5149, 50sylib 208 . . . . . . . . 9 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
5251adantl 467 . . . . . . . 8 ((𝜑𝐴 = (𝐵𝐴)) → 𝐴 = ∅)
5352fveq2d 6336 . . . . . . 7 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀𝐴) = (𝑀‘∅))
54 measvnul 30603 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
551, 54syl 17 . . . . . . . 8 (𝜑 → (𝑀‘∅) = 0)
5655adantr 466 . . . . . . 7 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀‘∅) = 0)
5753, 56eqtrd 2804 . . . . . 6 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀𝐴) = 0)
5857orcd 853 . . . . 5 ((𝜑𝐴 = (𝐵𝐴)) → ((𝑀𝐴) = 0 ∨ (𝑀𝐴) = +∞))
5958ex 397 . . . 4 (𝜑 → (𝐴 = (𝐵𝐴) → ((𝑀𝐴) = 0 ∨ (𝑀𝐴) = +∞)))
6046, 48, 5, 7, 14, 9, 59esumpr2 30463 . . 3 (𝜑 → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
6137, 44, 603eqtr3d 2812 . 2 (𝜑 → (𝑀𝐵) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
6222, 61breqtrrd 4812 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 826   = wceq 1630   ∈ wcel 2144   ∖ cdif 3718   ∪ cun 3719   ⊆ wss 3721  ∅c0 4061  𝒫 cpw 4295  {cpr 4316  ∪ cuni 4572  Disj wdisj 4752   class class class wbr 4784  ran crn 5250  ‘cfv 6031  (class class class)co 6792  ωcom 7211   ≼ cdom 8106  0cc0 10137  +∞cpnf 10272  ℝ*cxr 10274   ≤ cle 10276   +𝑒 cxad 12148  [,]cicc 12382  Σ*cesum 30423  sigAlgebracsiga 30504  measurescmeas 30592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-ac2 9486  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-ac 9138  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003  df-sin 15005  df-cos 15006  df-pi 15008  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-ordt 16368  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-ps 17407  df-tsr 17408  df-plusf 17448  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-subrg 18987  df-abv 19026  df-lmod 19074  df-scaf 19075  df-sra 19386  df-rgmod 19387  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-tmd 22095  df-tgp 22096  df-tsms 22149  df-trg 22182  df-xms 22344  df-ms 22345  df-tms 22346  df-nm 22606  df-ngp 22607  df-nrg 22609  df-nlm 22610  df-ii 22899  df-cncf 22900  df-limc 23849  df-dv 23850  df-log 24523  df-esum 30424  df-siga 30505  df-meas 30593 This theorem is referenced by:  measiun  30615  aean  30641  sibfinima  30735  prob01  30809  probinc  30817  probmeasb  30826  cndprob01  30831  dstfrvinc  30872
 Copyright terms: Public domain W3C validator