![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measssd | Structured version Visualization version GIF version |
Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
Ref | Expression |
---|---|
measssd.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
measssd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
measssd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
measssd.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
measssd | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measssd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
2 | measbase 30594 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
4 | measssd.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
5 | measssd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
6 | difelsiga 30530 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
7 | 3, 4, 5, 6 | syl3anc 1475 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
8 | measvxrge0 30602 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) | |
9 | 1, 7, 8 | syl2anc 565 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
10 | elxrge0 12487 | . . . . 5 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐵 ∖ 𝐴)))) | |
11 | 10 | simprbi 478 | . . . 4 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝐵 ∖ 𝐴))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑀‘(𝐵 ∖ 𝐴))) |
13 | measvxrge0 30602 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
14 | 1, 5, 13 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
15 | elxrge0 12487 | . . . . . 6 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) ↔ ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) | |
16 | 15 | simplbi 479 | . . . . 5 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) → (𝑀‘𝐴) ∈ ℝ*) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
18 | 10 | simplbi 479 | . . . . 5 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
20 | xraddge02 29855 | . . . 4 ⊢ (((𝑀‘𝐴) ∈ ℝ* ∧ (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐵 ∖ 𝐴)) → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))))) | |
21 | 17, 19, 20 | syl2anc 565 | . . 3 ⊢ (𝜑 → (0 ≤ (𝑀‘(𝐵 ∖ 𝐴)) → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))))) |
22 | 12, 21 | mpd 15 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
23 | prssi 4485 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) | |
24 | 5, 7, 23 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) |
25 | prex 5037 | . . . . . 6 ⊢ {𝐴, (𝐵 ∖ 𝐴)} ∈ V | |
26 | 25 | elpw 4301 | . . . . 5 ⊢ ({𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆 ↔ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) |
27 | 24, 26 | sylibr 224 | . . . 4 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆) |
28 | prct 29826 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) | |
29 | 5, 7, 28 | syl2anc 565 | . . . 4 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) |
30 | disjdifprg 29720 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦) | |
31 | 5, 4, 30 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦) |
32 | prcom 4401 | . . . . . . 7 ⊢ {(𝐵 ∖ 𝐴), 𝐴} = {𝐴, (𝐵 ∖ 𝐴)} | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {(𝐵 ∖ 𝐴), 𝐴} = {𝐴, (𝐵 ∖ 𝐴)}) |
34 | 33 | disjeq1d 4760 | . . . . 5 ⊢ (𝜑 → (Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦 ↔ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) |
35 | 31, 34 | mpbid 222 | . . . 4 ⊢ (𝜑 → Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦) |
36 | measvun 30606 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦)) | |
37 | 1, 27, 29, 35, 36 | syl112anc 1479 | . . 3 ⊢ (𝜑 → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦)) |
38 | uniprg 4586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) | |
39 | 5, 7, 38 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
40 | measssd.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
41 | undif 4189 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
42 | 40, 41 | sylib 208 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
43 | 39, 42 | eqtrd 2804 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, (𝐵 ∖ 𝐴)} = 𝐵) |
44 | 43 | fveq2d 6336 | . . 3 ⊢ (𝜑 → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = (𝑀‘𝐵)) |
45 | fveq2 6332 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘𝑦) = (𝑀‘𝐴)) | |
46 | 45 | adantl 467 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝑀‘𝑦) = (𝑀‘𝐴)) |
47 | fveq2 6332 | . . . . 5 ⊢ (𝑦 = (𝐵 ∖ 𝐴) → (𝑀‘𝑦) = (𝑀‘(𝐵 ∖ 𝐴))) | |
48 | 47 | adantl 467 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = (𝐵 ∖ 𝐴)) → (𝑀‘𝑦) = (𝑀‘(𝐵 ∖ 𝐴))) |
49 | eqimss 3804 | . . . . . . . . . 10 ⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 ⊆ (𝐵 ∖ 𝐴)) | |
50 | ssdifeq0 4191 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | |
51 | 49, 50 | sylib 208 | . . . . . . . . 9 ⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
52 | 51 | adantl 467 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → 𝐴 = ∅) |
53 | 52 | fveq2d 6336 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘𝐴) = (𝑀‘∅)) |
54 | measvnul 30603 | . . . . . . . . 9 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
55 | 1, 54 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) |
56 | 55 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘∅) = 0) |
57 | 53, 56 | eqtrd 2804 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘𝐴) = 0) |
58 | 57 | orcd 853 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → ((𝑀‘𝐴) = 0 ∨ (𝑀‘𝐴) = +∞)) |
59 | 58 | ex 397 | . . . 4 ⊢ (𝜑 → (𝐴 = (𝐵 ∖ 𝐴) → ((𝑀‘𝐴) = 0 ∨ (𝑀‘𝐴) = +∞))) |
60 | 46, 48, 5, 7, 14, 9, 59 | esumpr2 30463 | . . 3 ⊢ (𝜑 → Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
61 | 37, 44, 60 | 3eqtr3d 2812 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
62 | 22, 61 | breqtrrd 4812 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 ∖ cdif 3718 ∪ cun 3719 ⊆ wss 3721 ∅c0 4061 𝒫 cpw 4295 {cpr 4316 ∪ cuni 4572 Disj wdisj 4752 class class class wbr 4784 ran crn 5250 ‘cfv 6031 (class class class)co 6792 ωcom 7211 ≼ cdom 8106 0cc0 10137 +∞cpnf 10272 ℝ*cxr 10274 ≤ cle 10276 +𝑒 cxad 12148 [,]cicc 12382 Σ*cesum 30423 sigAlgebracsiga 30504 measurescmeas 30592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-ac2 9486 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-disj 4753 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-acn 8967 df-ac 9138 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-ordt 16368 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-ps 17407 df-tsr 17408 df-plusf 17448 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-subrg 18987 df-abv 19026 df-lmod 19074 df-scaf 19075 df-sra 19386 df-rgmod 19387 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-tmd 22095 df-tgp 22096 df-tsms 22149 df-trg 22182 df-xms 22344 df-ms 22345 df-tms 22346 df-nm 22606 df-ngp 22607 df-nrg 22609 df-nlm 22610 df-ii 22899 df-cncf 22900 df-limc 23849 df-dv 23850 df-log 24523 df-esum 30424 df-siga 30505 df-meas 30593 |
This theorem is referenced by: measiun 30615 aean 30641 sibfinima 30735 prob01 30809 probinc 30817 probmeasb 30826 cndprob01 30831 dstfrvinc 30872 |
Copyright terms: Public domain | W3C validator |