![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measfrge0 | Structured version Visualization version GIF version |
Description: A measure is a function over its base to the positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
measfrge0 | ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measbase 30590 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | ismeas 30592 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) |
4 | 3 | ibi 256 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)))) |
5 | 4 | simp1d 1137 | 1 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∅c0 4058 𝒫 cpw 4302 ∪ cuni 4588 Disj wdisj 4772 class class class wbr 4804 ran crn 5267 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ωcom 7231 ≼ cdom 8121 0cc0 10148 +∞cpnf 10283 [,]cicc 12391 Σ*cesum 30419 sigAlgebracsiga 30500 measurescmeas 30588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-esum 30420 df-meas 30589 |
This theorem is referenced by: measfn 30597 measvxrge0 30598 meascnbl 30612 measres 30615 measdivcstOLD 30617 measdivcst 30618 |
Copyright terms: Public domain | W3C validator |