Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measdivcstOLD Structured version   Visualization version   GIF version

Theorem measdivcstOLD 30415
Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
measdivcstOLD ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆

Proof of Theorem measdivcstOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5964 . . . . . 6 Fun (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))
2 ovex 6718 . . . . . . . 8 ((𝑀𝑥) /𝑒 𝐴) ∈ V
32rgenw 2953 . . . . . . 7 𝑥𝑆 ((𝑀𝑥) /𝑒 𝐴) ∈ V
4 dmmptg 5670 . . . . . . 7 (∀𝑥𝑆 ((𝑀𝑥) /𝑒 𝐴) ∈ V → dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = 𝑆)
53, 4ax-mp 5 . . . . . 6 dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = 𝑆
6 df-fn 5929 . . . . . 6 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆 ↔ (Fun (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∧ dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = 𝑆))
71, 5, 6mpbir2an 975 . . . . 5 (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆
87a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆)
9 vex 3234 . . . . . . 7 𝑦 ∈ V
10 eqid 2651 . . . . . . . 8 (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))
1110elrnmpt 5404 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ↔ ∃𝑥𝑆 𝑦 = ((𝑀𝑥) /𝑒 𝐴)))
129, 11ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ↔ ∃𝑥𝑆 𝑦 = ((𝑀𝑥) /𝑒 𝐴))
13 measfrge0 30394 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
14 ffvelrn 6397 . . . . . . . . . . 11 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
1513, 14sylan 487 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
1615adantlr 751 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
17 simplr 807 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ+)
1816, 17xrpxdivcld 29771 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀𝑥) /𝑒 𝐴) ∈ (0[,]+∞))
19 eleq1a 2725 . . . . . . . 8 (((𝑀𝑥) /𝑒 𝐴) ∈ (0[,]+∞) → (𝑦 = ((𝑀𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞)))
2018, 19syl 17 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → (𝑦 = ((𝑀𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞)))
2120rexlimdva 3060 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (∃𝑥𝑆 𝑦 = ((𝑀𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞)))
2212, 21syl5bi 232 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑦 ∈ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) → 𝑦 ∈ (0[,]+∞)))
2322ssrdv 3642 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ⊆ (0[,]+∞))
24 df-f 5930 . . . 4 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆 ∧ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ⊆ (0[,]+∞)))
258, 23, 24sylanbrc 699 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞))
26 measbase 30388 . . . . . . . 8 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
27 0elsiga 30305 . . . . . . . 8 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
2826, 27syl 17 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → ∅ ∈ 𝑆)
2928adantr 480 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∅ ∈ 𝑆)
30 ovex 6718 . . . . . 6 ((𝑀‘∅) /𝑒 𝐴) ∈ V
3129, 30jctir 560 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (∅ ∈ 𝑆 ∧ ((𝑀‘∅) /𝑒 𝐴) ∈ V))
32 fveq2 6229 . . . . . . 7 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
3332oveq1d 6705 . . . . . 6 (𝑥 = ∅ → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀‘∅) /𝑒 𝐴))
3433, 10fvmptg 6319 . . . . 5 ((∅ ∈ 𝑆 ∧ ((𝑀‘∅) /𝑒 𝐴) ∈ V) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴))
3531, 34syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴))
36 measvnul 30397 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
3736oveq1d 6705 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ((𝑀‘∅) /𝑒 𝐴) = (0 /𝑒 𝐴))
38 xdiv0rp 29766 . . . . 5 (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0)
3937, 38sylan9eq 2705 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑀‘∅) /𝑒 𝐴) = 0)
4035, 39eqtrd 2685 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0)
41 simpll 805 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+))
42 simplr 807 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆)
43 simprl 809 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ≼ ω)
44 simprr 811 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Disj 𝑧𝑦 𝑧)
4542, 43, 443jca 1261 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧))
469a1i 11 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝑦 ∈ V)
47 simplll 813 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑀 ∈ (measures‘𝑆))
48 simplr 807 . . . . . . . . . . 11 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑦 ∈ 𝒫 𝑆)
49 simpr 476 . . . . . . . . . . 11 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑧𝑦)
50 elpwg 4199 . . . . . . . . . . . . 13 (𝑦 ∈ V → (𝑦 ∈ 𝒫 𝑆𝑦𝑆))
519, 50ax-mp 5 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝑆𝑦𝑆)
52 ssel2 3631 . . . . . . . . . . . 12 ((𝑦𝑆𝑧𝑦) → 𝑧𝑆)
5351, 52sylanb 488 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝑆𝑧𝑦) → 𝑧𝑆)
5448, 49, 53syl2anc 694 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑧𝑆)
55 measvxrge0 30396 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑧𝑆) → (𝑀𝑧) ∈ (0[,]+∞))
5647, 54, 55syl2anc 694 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → (𝑀𝑧) ∈ (0[,]+∞))
57 simplr 807 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝐴 ∈ ℝ+)
5846, 56, 57esumdivc 30273 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
59583ad2antr1 1246 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
6026ad2antrr 762 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑆 ran sigAlgebra)
61 simpr1 1087 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆)
62 simpr2 1088 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ≼ ω)
63 sigaclcu 30308 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
6460, 61, 62, 63syl3anc 1366 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦𝑆)
65 fveq2 6229 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀 𝑦))
6665oveq1d 6705 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀 𝑦) /𝑒 𝐴))
6766, 10, 2fvmpt3i 6326 . . . . . . . . 9 ( 𝑦𝑆 → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = ((𝑀 𝑦) /𝑒 𝐴))
6864, 67syl 17 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = ((𝑀 𝑦) /𝑒 𝐴))
69 simpll 805 . . . . . . . . . . 11 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑀 ∈ (measures‘𝑆))
7069, 61jca 553 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆))
71 simpr3 1089 . . . . . . . . . . 11 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Disj 𝑧𝑦 𝑧)
7262, 71jca 553 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧))
73 measvun 30400 . . . . . . . . . . . . 13 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧))
74733expia 1286 . . . . . . . . . . . 12 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧)))
7574ralrimiva 2995 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧)))
7675r19.21bi 2961 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧)))
7770, 72, 76sylc 65 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧))
7877oveq1d 6705 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑀 𝑦) /𝑒 𝐴) = (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴))
7968, 78eqtrd 2685 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴))
80 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑀𝑥) = (𝑀𝑧))
8180oveq1d 6705 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀𝑧) /𝑒 𝐴))
8281, 10, 2fvmpt3i 6326 . . . . . . . . . 10 (𝑧𝑆 → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀𝑧) /𝑒 𝐴))
8353, 82syl 17 . . . . . . . . 9 ((𝑦 ∈ 𝒫 𝑆𝑧𝑦) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀𝑧) /𝑒 𝐴))
8483esumeq2dv 30228 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑆 → Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
8561, 84syl 17 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
8659, 79, 853eqtr4d 2695 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))
8741, 45, 86syl2anc 694 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))
8887ex 449 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))
8988ralrimiva 2995 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))
9025, 40, 893jca 1261 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))))
91 ismeas 30390 . . . . 5 (𝑆 ran sigAlgebra → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))))
9226, 91syl 17 . . . 4 (𝑀 ∈ (measures‘𝑆) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))))
9392biimprd 238 . . 3 (𝑀 ∈ (measures‘𝑆) → (((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)))
9493adantr 480 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)))
9590, 94mpd 15 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468  Disj wdisj 4652   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  0cc0 9974  +∞cpnf 10109  +crp 11870  [,]cicc 12216   /𝑒 cxdiv 29753  Σ*cesum 30217  sigAlgebracsiga 30298  measurescmeas 30386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-ordt 16208  df-xrs 16209  df-mre 16293  df-mrc 16294  df-acs 16296  df-ps 17247  df-tsr 17248  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-cntz 17796  df-cmn 18241  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-nei 20950  df-cn 21079  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977  df-xdiv 29754  df-esum 30218  df-siga 30299  df-meas 30387
This theorem is referenced by:  probfinmeasbOLD  30618  probmeasb  30620
  Copyright terms: Public domain W3C validator