Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measdivcstOLD Structured version   Visualization version   GIF version

Theorem measdivcstOLD 30415
 Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
measdivcstOLD ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆

Proof of Theorem measdivcstOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5964 . . . . . 6 Fun (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))
2 ovex 6718 . . . . . . . 8 ((𝑀𝑥) /𝑒 𝐴) ∈ V
32rgenw 2953 . . . . . . 7 𝑥𝑆 ((𝑀𝑥) /𝑒 𝐴) ∈ V
4 dmmptg 5670 . . . . . . 7 (∀𝑥𝑆 ((𝑀𝑥) /𝑒 𝐴) ∈ V → dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = 𝑆)
53, 4ax-mp 5 . . . . . 6 dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = 𝑆
6 df-fn 5929 . . . . . 6 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆 ↔ (Fun (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∧ dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = 𝑆))
71, 5, 6mpbir2an 975 . . . . 5 (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆
87a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆)
9 vex 3234 . . . . . . 7 𝑦 ∈ V
10 eqid 2651 . . . . . . . 8 (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))
1110elrnmpt 5404 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ↔ ∃𝑥𝑆 𝑦 = ((𝑀𝑥) /𝑒 𝐴)))
129, 11ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ↔ ∃𝑥𝑆 𝑦 = ((𝑀𝑥) /𝑒 𝐴))
13 measfrge0 30394 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
14 ffvelrn 6397 . . . . . . . . . . 11 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
1513, 14sylan 487 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
1615adantlr 751 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
17 simplr 807 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ+)
1816, 17xrpxdivcld 29771 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀𝑥) /𝑒 𝐴) ∈ (0[,]+∞))
19 eleq1a 2725 . . . . . . . 8 (((𝑀𝑥) /𝑒 𝐴) ∈ (0[,]+∞) → (𝑦 = ((𝑀𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞)))
2018, 19syl 17 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → (𝑦 = ((𝑀𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞)))
2120rexlimdva 3060 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (∃𝑥𝑆 𝑦 = ((𝑀𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞)))
2212, 21syl5bi 232 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑦 ∈ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) → 𝑦 ∈ (0[,]+∞)))
2322ssrdv 3642 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ⊆ (0[,]+∞))
24 df-f 5930 . . . 4 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) Fn 𝑆 ∧ ran (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ⊆ (0[,]+∞)))
258, 23, 24sylanbrc 699 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞))
26 measbase 30388 . . . . . . . 8 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
27 0elsiga 30305 . . . . . . . 8 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
2826, 27syl 17 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → ∅ ∈ 𝑆)
2928adantr 480 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∅ ∈ 𝑆)
30 ovex 6718 . . . . . 6 ((𝑀‘∅) /𝑒 𝐴) ∈ V
3129, 30jctir 560 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (∅ ∈ 𝑆 ∧ ((𝑀‘∅) /𝑒 𝐴) ∈ V))
32 fveq2 6229 . . . . . . 7 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
3332oveq1d 6705 . . . . . 6 (𝑥 = ∅ → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀‘∅) /𝑒 𝐴))
3433, 10fvmptg 6319 . . . . 5 ((∅ ∈ 𝑆 ∧ ((𝑀‘∅) /𝑒 𝐴) ∈ V) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴))
3531, 34syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴))
36 measvnul 30397 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
3736oveq1d 6705 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ((𝑀‘∅) /𝑒 𝐴) = (0 /𝑒 𝐴))
38 xdiv0rp 29766 . . . . 5 (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0)
3937, 38sylan9eq 2705 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑀‘∅) /𝑒 𝐴) = 0)
4035, 39eqtrd 2685 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0)
41 simpll 805 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+))
42 simplr 807 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆)
43 simprl 809 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ≼ ω)
44 simprr 811 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Disj 𝑧𝑦 𝑧)
4542, 43, 443jca 1261 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧))
469a1i 11 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝑦 ∈ V)
47 simplll 813 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑀 ∈ (measures‘𝑆))
48 simplr 807 . . . . . . . . . . 11 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑦 ∈ 𝒫 𝑆)
49 simpr 476 . . . . . . . . . . 11 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑧𝑦)
50 elpwg 4199 . . . . . . . . . . . . 13 (𝑦 ∈ V → (𝑦 ∈ 𝒫 𝑆𝑦𝑆))
519, 50ax-mp 5 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝑆𝑦𝑆)
52 ssel2 3631 . . . . . . . . . . . 12 ((𝑦𝑆𝑧𝑦) → 𝑧𝑆)
5351, 52sylanb 488 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝑆𝑧𝑦) → 𝑧𝑆)
5448, 49, 53syl2anc 694 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑧𝑆)
55 measvxrge0 30396 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑧𝑆) → (𝑀𝑧) ∈ (0[,]+∞))
5647, 54, 55syl2anc 694 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → (𝑀𝑧) ∈ (0[,]+∞))
57 simplr 807 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝐴 ∈ ℝ+)
5846, 56, 57esumdivc 30273 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
59583ad2antr1 1246 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
6026ad2antrr 762 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑆 ran sigAlgebra)
61 simpr1 1087 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆)
62 simpr2 1088 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ≼ ω)
63 sigaclcu 30308 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
6460, 61, 62, 63syl3anc 1366 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦𝑆)
65 fveq2 6229 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀 𝑦))
6665oveq1d 6705 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀 𝑦) /𝑒 𝐴))
6766, 10, 2fvmpt3i 6326 . . . . . . . . 9 ( 𝑦𝑆 → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = ((𝑀 𝑦) /𝑒 𝐴))
6864, 67syl 17 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = ((𝑀 𝑦) /𝑒 𝐴))
69 simpll 805 . . . . . . . . . . 11 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑀 ∈ (measures‘𝑆))
7069, 61jca 553 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆))
71 simpr3 1089 . . . . . . . . . . 11 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Disj 𝑧𝑦 𝑧)
7262, 71jca 553 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧))
73 measvun 30400 . . . . . . . . . . . . 13 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧))
74733expia 1286 . . . . . . . . . . . 12 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧)))
7574ralrimiva 2995 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧)))
7675r19.21bi 2961 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧)))
7770, 72, 76sylc 65 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧))
7877oveq1d 6705 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑀 𝑦) /𝑒 𝐴) = (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴))
7968, 78eqtrd 2685 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴))
80 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑀𝑥) = (𝑀𝑧))
8180oveq1d 6705 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀𝑧) /𝑒 𝐴))
8281, 10, 2fvmpt3i 6326 . . . . . . . . . 10 (𝑧𝑆 → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀𝑧) /𝑒 𝐴))
8353, 82syl 17 . . . . . . . . 9 ((𝑦 ∈ 𝒫 𝑆𝑧𝑦) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀𝑧) /𝑒 𝐴))
8483esumeq2dv 30228 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑆 → Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
8561, 84syl 17 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
8659, 79, 853eqtr4d 2695 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))
8741, 45, 86syl2anc 694 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))
8887ex 449 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))
8988ralrimiva 2995 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))
9025, 40, 893jca 1261 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))))
91 ismeas 30390 . . . . 5 (𝑆 ran sigAlgebra → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))))
9226, 91syl 17 . . . 4 (𝑀 ∈ (measures‘𝑆) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))))
9392biimprd 238 . . 3 (𝑀 ∈ (measures‘𝑆) → (((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)))
9493adantr 480 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)))
9590, 94mpd 15 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  ∪ cuni 4468  Disj wdisj 4652   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ran crn 5144  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ωcom 7107   ≼ cdom 7995  0cc0 9974  +∞cpnf 10109  ℝ+crp 11870  [,]cicc 12216   /𝑒 cxdiv 29753  Σ*cesum 30217  sigAlgebracsiga 30298  measurescmeas 30386 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-ordt 16208  df-xrs 16209  df-mre 16293  df-mrc 16294  df-acs 16296  df-ps 17247  df-tsr 17248  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-cntz 17796  df-cmn 18241  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-nei 20950  df-cn 21079  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977  df-xdiv 29754  df-esum 30218  df-siga 30299  df-meas 30387 This theorem is referenced by:  probfinmeasbOLD  30618  probmeasb  30620
 Copyright terms: Public domain W3C validator