Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninclem Structured version   Visualization version   GIF version

Theorem meaiuninclem 41015
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiuninclem.m (𝜑𝑀 ∈ Meas)
meaiuninclem.n (𝜑𝑁 ∈ ℤ)
meaiuninclem.z 𝑍 = (ℤ𝑁)
meaiuninclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninclem.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninclem.b (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
meaiuninclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiuninclem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiuninclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑛,𝑥   𝑖,𝐹,𝑛,𝑥   𝑖,𝑀,𝑛,𝑥   𝑖,𝑁,𝑛,𝑥   𝑆,𝑛,𝑥   𝑖,𝑍,𝑛,𝑥   𝜑,𝑖,𝑛,𝑥
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem meaiuninclem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 meaiuninclem.z . . 3 𝑍 = (ℤ𝑁)
2 meaiuninclem.n . . 3 (𝜑𝑁 ∈ ℤ)
3 0xr 10124 . . . . . . 7 0 ∈ ℝ*
43a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → 0 ∈ ℝ*)
5 pnfxr 10130 . . . . . . 7 +∞ ∈ ℝ*
65a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → +∞ ∈ ℝ*)
7 meaiuninclem.m . . . . . . . 8 (𝜑𝑀 ∈ Meas)
87adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
9 eqid 2651 . . . . . . 7 dom 𝑀 = dom 𝑀
10 meaiuninclem.e . . . . . . . 8 (𝜑𝐸:𝑍⟶dom 𝑀)
1110ffvelrnda 6399 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
128, 9, 11meaxrcl 40996 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
138, 11meage0 41010 . . . . . 6 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐸𝑛)))
14 meaiuninclem.b . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
16 simp1 1081 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝜑𝑛𝑍))
17 simp2 1082 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ)
18 simp3 1083 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1916simprd 478 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑛𝑍)
20 rspa 2959 . . . . . . . . . . 11 ((∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2118, 19, 20syl2anc 694 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
22123ad2ant1 1102 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
23 rexr 10123 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
24233ad2ant2 1103 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ*)
255a1i 11 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → +∞ ∈ ℝ*)
26 simp3 1083 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 ltpnf 11992 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 < +∞)
28273ad2ant2 1103 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 < +∞)
2922, 24, 25, 26, 28xrlelttrd 12029 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
3016, 17, 21, 29syl3anc 1366 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
31303exp 1283 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ ℝ → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞)))
3231rexlimdv 3059 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞))
3315, 32mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) < +∞)
344, 6, 12, 13, 33elicod 12262 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,)+∞))
35 meaiuninclem.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
3634, 35fmptd 6425 . . . 4 (𝜑𝑆:𝑍⟶(0[,)+∞))
37 rge0ssre 12318 . . . . 5 (0[,)+∞) ⊆ ℝ
3837a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ ℝ)
3936, 38fssd 6095 . . 3 (𝜑𝑆:𝑍⟶ℝ)
401peano2uzs 11780 . . . . . . 7 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
4140adantl 481 . . . . . 6 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
4210ffvelrnda 6399 . . . . . 6 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
4341, 42syldan 486 . . . . 5 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
44 meaiuninclem.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
458, 9, 11, 43, 44meassle 40998 . . . 4 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1))))
4635a1i 11 . . . . . 6 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
47 fvexd 6241 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ V)
4846, 47fvmpt2d 6332 . . . . 5 ((𝜑𝑛𝑍) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
49 fveq2 6229 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
5049fveq2d 6233 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑚)))
5150cbvmptv 4783 . . . . . . . 8 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
5235, 51eqtri 2673 . . . . . . 7 𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
5352a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚))))
54 fveq2 6229 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝐸𝑚) = (𝐸‘(𝑛 + 1)))
5554fveq2d 6233 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑀‘(𝐸𝑚)) = (𝑀‘(𝐸‘(𝑛 + 1))))
5655adantl 481 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑚 = (𝑛 + 1)) → (𝑀‘(𝐸𝑚)) = (𝑀‘(𝐸‘(𝑛 + 1))))
57 fvexd 6241 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸‘(𝑛 + 1))) ∈ V)
5853, 56, 41, 57fvmptd 6327 . . . . 5 ((𝜑𝑛𝑍) → (𝑆‘(𝑛 + 1)) = (𝑀‘(𝐸‘(𝑛 + 1))))
5948, 58breq12d 4698 . . . 4 ((𝜑𝑛𝑍) → ((𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)) ↔ (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1)))))
6045, 59mpbird 247 . . 3 ((𝜑𝑛𝑍) → (𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)))
6148eqcomd 2657 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑆𝑛))
6261breq1d 4695 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑆𝑛) ≤ 𝑥))
6362ralbidva 3014 . . . . . . 7 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6463biimpd 219 . . . . . 6 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6564adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6665reximdva 3046 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6714, 66mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥)
681, 2, 39, 60, 67climsup 14444 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
69 nfv 1883 . . . . . 6 𝑛𝜑
70 nfv 1883 . . . . . 6 𝑥𝜑
71 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
72 fvex 6239 . . . . . . . . . . . . 13 (𝐸𝑛) ∈ V
7372difexi 4842 . . . . . . . . . . . 12 ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V
7473a1i 11 . . . . . . . . . . 11 (𝑛𝑍 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
75 meaiuninclem.f . . . . . . . . . . . 12 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7675fvmpt2 6330 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7771, 74, 76syl2anc 694 . . . . . . . . . 10 (𝑛𝑍 → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7877adantl 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
797, 9dmmeasal 40987 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ∈ SAlg)
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
81 fzoct 39916 . . . . . . . . . . . 12 (𝑁..^𝑛) ≼ ω
8281a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑁..^𝑛) ≼ ω)
8310adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶dom 𝑀)
84 fzossuz 39911 . . . . . . . . . . . . . . . 16 (𝑁..^𝑛) ⊆ (ℤ𝑁)
851eqcomi 2660 . . . . . . . . . . . . . . . 16 (ℤ𝑁) = 𝑍
8684, 85sseqtri 3670 . . . . . . . . . . . . . . 15 (𝑁..^𝑛) ⊆ 𝑍
8786sseli 3632 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
8887adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
8983, 88ffvelrnd 6400 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
9089adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
9180, 82, 90saliuncl 40860 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀)
92 saldifcl2 40864 . . . . . . . . . 10 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝑛) ∈ dom 𝑀 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
9380, 11, 91, 92syl3anc 1366 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
9478, 93eqeltrd 2730 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀)
958, 9, 94meaxrcl 40996 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ ℝ*)
968, 94meage0 41010 . . . . . . 7 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐹𝑛)))
97 difssd 3771 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
9878, 97eqsstrd 3672 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
998, 9, 94, 11, 98meassle 40998 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
10095, 12, 6, 99, 33xrlelttrd 12029 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) < +∞)
1014, 6, 95, 96, 100elicod 12262 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞))
102 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
103102fveq2d 6233 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑖)))
104103breq1d 4695 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸𝑖)) ≤ 𝑥))
105104cbvralv 3201 . . . . . . . . . . . 12 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
106105biimpi 206 . . . . . . . . . . 11 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
107106adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
108 eleq1 2718 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛𝑍𝑖𝑍))
109108anbi2d 740 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝜑𝑛𝑍) ↔ (𝜑𝑖𝑍)))
110 oveq2 6698 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑁...𝑛) = (𝑁...𝑖))
111110sumeq1d 14475 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
112103, 111eqeq12d 2666 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) ↔ (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚))))
113109, 112imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))))
114 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (𝑚𝑍𝑛𝑍))
115114anbi2d 740 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝜑𝑚𝑍) ↔ (𝜑𝑛𝑍)))
116 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (𝑁...𝑚) = (𝑁...𝑛))
117116iuneq1d 4577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
118116iuneq1d 4577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
119117, 118eqeq12d 2666 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ( 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) ↔ 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖)))
120115, 119imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)) ↔ ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))))
121 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
122121cbviunv 4591 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)
123122a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
12469, 1, 10, 75iundjiun 40995 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
125124simplld 806 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
126125adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
127 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑚𝑍)
128 rspa 2959 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
129126, 127, 128syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
130102cbviunv 4591 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)
131130a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
132123, 129, 1313eqtrd 2689 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
133120, 132chvarv 2299 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
13471, 1syl6eleq 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
135134adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑁))
136 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑛 + 1) = (𝑖 + 1))
137136fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1)))
138102, 137sseq12d 3667 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1))))
139109, 138imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))))
140139, 44chvarv 2299 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
14188, 140syldan 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
142141adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
143135, 142iunincfi 39586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖) = (𝐸𝑛))
144133, 143eqtr2d 2686 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
145144fveq2d 6233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
146 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑖(𝜑𝑛𝑍)
147 elfzuz 12376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁...𝑛) → 𝑖 ∈ (ℤ𝑁))
148147, 85syl6eleq 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁...𝑛) → 𝑖𝑍)
149148adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → 𝑖𝑍)
150 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
151150eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → ((𝐹𝑛) ∈ dom 𝑀 ↔ (𝐹𝑖) ∈ dom 𝑀))
152109, 151imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)))
153152, 94chvarv 2299 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)
154149, 153syldan 486 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
155154adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
156 fzct 39909 . . . . . . . . . . . . . . . . . . 19 (𝑁...𝑛) ≼ ω
157156a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑁...𝑛) ≼ ω)
158149ssd 39566 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁...𝑛) ⊆ 𝑍)
159124simprd 478 . . . . . . . . . . . . . . . . . . . . 21 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
160150cbvdisjv 4663 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑖𝑍 (𝐹𝑖))
161159, 160sylib 208 . . . . . . . . . . . . . . . . . . . 20 (𝜑Disj 𝑖𝑍 (𝐹𝑖))
162 disjss1 4658 . . . . . . . . . . . . . . . . . . . 20 ((𝑁...𝑛) ⊆ 𝑍 → (Disj 𝑖𝑍 (𝐹𝑖) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
163158, 161, 162sylc 65 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
164163adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
165146, 8, 9, 155, 157, 164meadjiun 41001 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)) = (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))))
166 fzfid 12812 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑁...𝑛) ∈ Fin)
167150fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (𝑀‘(𝐹𝑛)) = (𝑀‘(𝐹𝑖)))
168167eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → ((𝑀‘(𝐹𝑛)) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞)))
169109, 168imbi12d 333 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞)) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))))
170169, 101chvarv 2299 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
171149, 170syldan 486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
172171adantlr 751 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
173166, 172sge0fsummpt 40925 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)))
174 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
175174fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑚 → (𝑀‘(𝐹𝑖)) = (𝑀‘(𝐹𝑚)))
176175cbvsumv 14470 . . . . . . . . . . . . . . . . . . 19 Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))
177176a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
178173, 177eqtrd 2685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
179145, 165, 1783eqtrd 2689 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
180113, 179chvarv 2299 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
181 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
182181fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (𝑀‘(𝐹𝑚)) = (𝑀‘(𝐹𝑛)))
183182cbvsumv 14470 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))
184183a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
185180, 184eqtrd 2685 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
186185breq1d 4695 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ((𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
187186ralbidva 3014 . . . . . . . . . . . 12 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
188187biimpd 219 . . . . . . . . . . 11 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
189188imp 444 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
190107, 189syldan 486 . . . . . . . . 9 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
191190ex 449 . . . . . . . 8 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
192191reximdv 3045 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
19314, 192mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
19469, 70, 2, 1, 101, 193sge0reuzb 40983 . . . . 5 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
195103cbvmptv 4783 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
19635, 195eqtri 2673 . . . . . . . . 9 𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
197196a1i 11 . . . . . . . 8 (𝜑𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))))
198185mpteq2dva 4777 . . . . . . . 8 (𝜑 → (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))) = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
199197, 198eqtrd 2685 . . . . . . 7 (𝜑𝑆 = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
200199rneqd 5385 . . . . . 6 (𝜑 → ran 𝑆 = ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
201200supeq1d 8393 . . . . 5 (𝜑 → sup(ran 𝑆, ℝ, < ) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
202194, 201eqtr4d 2688 . . . 4 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran 𝑆, ℝ, < ))
203202eqcomd 2657 . . 3 (𝜑 → sup(ran 𝑆, ℝ, < ) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
2041uzct 39546 . . . . . 6 𝑍 ≼ ω
205204a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
20669, 7, 9, 94, 205, 159meadjiun 41001 . . . 4 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
207206eqcomd 2657 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (𝑀 𝑛𝑍 (𝐹𝑛)))
208124simplrd 808 . . . 4 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
209208fveq2d 6233 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
210203, 207, 2093eqtrd 2689 . 2 (𝜑 → sup(ran 𝑆, ℝ, < ) = (𝑀 𝑛𝑍 (𝐸𝑛)))
21168, 210breqtrd 4711 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  wss 3607   ciun 4552  Disj wdisj 4652   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  supcsup 8387  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cz 11415  cuz 11725  [,)cico 12215  ...cfz 12364  ..^cfzo 12504  cli 14259  Σcsu 14460  SAlgcsalg 40846  Σ^csumge0 40897  Meascmea 40984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-salg 40847  df-sumge0 40898  df-mea 40985
This theorem is referenced by:  meaiuninc  41016
  Copyright terms: Public domain W3C validator