![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiunincf | Structured version Visualization version GIF version |
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of non-decreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
Ref | Expression |
---|---|
meaiunincf.p | ⊢ Ⅎ𝑛𝜑 |
meaiunincf.f | ⊢ Ⅎ𝑛𝐸 |
meaiunincf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiunincf.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiunincf.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiunincf.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiunincf.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiunincf.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
meaiunincf.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiunincf | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiunincf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | meaiunincf.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | meaiunincf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
4 | meaiunincf.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
5 | meaiunincf.p | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
6 | nfv 1995 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
7 | 5, 6 | nfan 1980 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍) |
8 | meaiunincf.f | . . . . . . 7 ⊢ Ⅎ𝑛𝐸 | |
9 | nfcv 2913 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
10 | 8, 9 | nffv 6339 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘𝑘) |
11 | nfcv 2913 | . . . . . . 7 ⊢ Ⅎ𝑛(𝑘 + 1) | |
12 | 8, 11 | nffv 6339 | . . . . . 6 ⊢ Ⅎ𝑛(𝐸‘(𝑘 + 1)) |
13 | 10, 12 | nfss 3745 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)) |
14 | 7, 13 | nfim 1977 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
15 | eleq1w 2833 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍)) | |
16 | 15 | anbi2d 614 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍))) |
17 | fveq2 6332 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘𝑛) = (𝐸‘𝑘)) | |
18 | fvoveq1 6816 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1))) | |
19 | 17, 18 | sseq12d 3783 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1)))) |
20 | 16, 19 | imbi12d 333 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))))) |
21 | meaiunincf.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
22 | 14, 20, 21 | chvar 2424 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐸‘𝑘) ⊆ (𝐸‘(𝑘 + 1))) |
23 | meaiunincf.x | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
24 | nfv 1995 | . . . . 5 ⊢ Ⅎ𝑦∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 | |
25 | nfv 1995 | . . . . 5 ⊢ Ⅎ𝑥∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦 | |
26 | breq2 4790 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) | |
27 | 26 | ralbidv 3135 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦)) |
28 | nfv 1995 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) ≤ 𝑦 | |
29 | nfcv 2913 | . . . . . . . . . 10 ⊢ Ⅎ𝑛𝑀 | |
30 | 29, 10 | nffv 6339 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) |
31 | nfcv 2913 | . . . . . . . . 9 ⊢ Ⅎ𝑛 ≤ | |
32 | nfcv 2913 | . . . . . . . . 9 ⊢ Ⅎ𝑛𝑦 | |
33 | 30, 31, 32 | nfbr 4833 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ≤ 𝑦 |
34 | 17 | fveq2d 6336 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑘))) |
35 | 34 | breq1d 4796 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
36 | 28, 33, 35 | cbvral 3316 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
37 | 36 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
38 | 27, 37 | bitrd 268 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦)) |
39 | 24, 25, 38 | cbvrex 3317 | . . . 4 ⊢ (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
40 | 23, 39 | sylib 208 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ≤ 𝑦) |
41 | meaiunincf.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
42 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑘(𝑀‘(𝐸‘𝑛)) | |
43 | 42, 30, 34 | cbvmpt 4883 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
44 | 41, 43 | eqtri 2793 | . . 3 ⊢ 𝑆 = (𝑘 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑘))) |
45 | 1, 2, 3, 4, 22, 40, 44 | meaiuninc 41215 | . 2 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘))) |
46 | nfcv 2913 | . . . 4 ⊢ Ⅎ𝑘(𝐸‘𝑛) | |
47 | fveq2 6332 | . . . 4 ⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) | |
48 | 10, 46, 47 | cbviun 4691 | . . 3 ⊢ ∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
49 | 48 | fveq2i 6335 | . 2 ⊢ (𝑀‘∪ 𝑘 ∈ 𝑍 (𝐸‘𝑘)) = (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
50 | 45, 49 | syl6breq 4827 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 Ⅎwnf 1856 ∈ wcel 2145 Ⅎwnfc 2900 ∀wral 3061 ∃wrex 3062 ⊆ wss 3723 ∪ ciun 4654 class class class wbr 4786 ↦ cmpt 4863 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 1c1 10139 + caddc 10141 ≤ cle 10277 ℤcz 11579 ℤ≥cuz 11888 ⇝ cli 14423 Meascmea 41183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-disj 4755 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-omul 7718 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-oi 8571 df-card 8965 df-acn 8968 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-xadd 12152 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-salg 41046 df-sumge0 41097 df-mea 41184 |
This theorem is referenced by: meaiuninc3v 41218 |
Copyright terms: Public domain | W3C validator |