Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiunincf Structured version   Visualization version   GIF version

Theorem meaiunincf 41217
 Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of non-decreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiunincf.p 𝑛𝜑
meaiunincf.f 𝑛𝐸
meaiunincf.m (𝜑𝑀 ∈ Meas)
meaiunincf.n (𝜑𝑁 ∈ ℤ)
meaiunincf.z 𝑍 = (ℤ𝑁)
meaiunincf.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiunincf.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiunincf.x (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
meaiunincf.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiunincf (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑥,𝐸   𝑛,𝑀,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐸(𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem meaiunincf
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiunincf.m . . 3 (𝜑𝑀 ∈ Meas)
2 meaiunincf.n . . 3 (𝜑𝑁 ∈ ℤ)
3 meaiunincf.z . . 3 𝑍 = (ℤ𝑁)
4 meaiunincf.e . . 3 (𝜑𝐸:𝑍⟶dom 𝑀)
5 meaiunincf.p . . . . . 6 𝑛𝜑
6 nfv 1995 . . . . . 6 𝑛 𝑘𝑍
75, 6nfan 1980 . . . . 5 𝑛(𝜑𝑘𝑍)
8 meaiunincf.f . . . . . . 7 𝑛𝐸
9 nfcv 2913 . . . . . . 7 𝑛𝑘
108, 9nffv 6339 . . . . . 6 𝑛(𝐸𝑘)
11 nfcv 2913 . . . . . . 7 𝑛(𝑘 + 1)
128, 11nffv 6339 . . . . . 6 𝑛(𝐸‘(𝑘 + 1))
1310, 12nfss 3745 . . . . 5 𝑛(𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))
147, 13nfim 1977 . . . 4 𝑛((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
15 eleq1w 2833 . . . . . 6 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
1615anbi2d 614 . . . . 5 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
17 fveq2 6332 . . . . . 6 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
18 fvoveq1 6816 . . . . . 6 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
1917, 18sseq12d 3783 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
2016, 19imbi12d 333 . . . 4 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
21 meaiunincf.i . . . 4 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2214, 20, 21chvar 2424 . . 3 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
23 meaiunincf.x . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
24 nfv 1995 . . . . 5 𝑦𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
25 nfv 1995 . . . . 5 𝑥𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦
26 breq2 4790 . . . . . . 7 (𝑥 = 𝑦 → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸𝑛)) ≤ 𝑦))
2726ralbidv 3135 . . . . . 6 (𝑥 = 𝑦 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑦))
28 nfv 1995 . . . . . . . 8 𝑘(𝑀‘(𝐸𝑛)) ≤ 𝑦
29 nfcv 2913 . . . . . . . . . 10 𝑛𝑀
3029, 10nffv 6339 . . . . . . . . 9 𝑛(𝑀‘(𝐸𝑘))
31 nfcv 2913 . . . . . . . . 9 𝑛
32 nfcv 2913 . . . . . . . . 9 𝑛𝑦
3330, 31, 32nfbr 4833 . . . . . . . 8 𝑛(𝑀‘(𝐸𝑘)) ≤ 𝑦
3417fveq2d 6336 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑘)))
3534breq1d 4796 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑀‘(𝐸𝑛)) ≤ 𝑦 ↔ (𝑀‘(𝐸𝑘)) ≤ 𝑦))
3628, 33, 35cbvral 3316 . . . . . . 7 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑦 ↔ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦)
3736a1i 11 . . . . . 6 (𝑥 = 𝑦 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑦 ↔ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦))
3827, 37bitrd 268 . . . . 5 (𝑥 = 𝑦 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦))
3924, 25, 38cbvrex 3317 . . . 4 (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∃𝑦 ∈ ℝ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦)
4023, 39sylib 208 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 (𝑀‘(𝐸𝑘)) ≤ 𝑦)
41 meaiunincf.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
42 nfcv 2913 . . . . 5 𝑘(𝑀‘(𝐸𝑛))
4342, 30, 34cbvmpt 4883 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑘𝑍 ↦ (𝑀‘(𝐸𝑘)))
4441, 43eqtri 2793 . . 3 𝑆 = (𝑘𝑍 ↦ (𝑀‘(𝐸𝑘)))
451, 2, 3, 4, 22, 40, 44meaiuninc 41215 . 2 (𝜑𝑆 ⇝ (𝑀 𝑘𝑍 (𝐸𝑘)))
46 nfcv 2913 . . . 4 𝑘(𝐸𝑛)
47 fveq2 6332 . . . 4 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
4810, 46, 47cbviun 4691 . . 3 𝑘𝑍 (𝐸𝑘) = 𝑛𝑍 (𝐸𝑛)
4948fveq2i 6335 . 2 (𝑀 𝑘𝑍 (𝐸𝑘)) = (𝑀 𝑛𝑍 (𝐸𝑛))
5045, 49syl6breq 4827 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631  Ⅎwnf 1856   ∈ wcel 2145  Ⅎwnfc 2900  ∀wral 3061  ∃wrex 3062   ⊆ wss 3723  ∪ ciun 4654   class class class wbr 4786   ↦ cmpt 4863  dom cdm 5249  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  ℝcr 10137  1c1 10139   + caddc 10141   ≤ cle 10277  ℤcz 11579  ℤ≥cuz 11888   ⇝ cli 14423  Meascmea 41183 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-acn 8968  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-xadd 12152  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-salg 41046  df-sumge0 41097  df-mea 41184 This theorem is referenced by:  meaiuninc3v  41218
 Copyright terms: Public domain W3C validator