Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjun Structured version   Visualization version   GIF version

Theorem meadjun 41174
Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjun.m (𝜑𝑀 ∈ Meas)
meadjun.x 𝑆 = dom 𝑀
meadjun.a (𝜑𝐴𝑆)
meadjun.b (𝜑𝐵𝑆)
meadjun.dj (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
meadjun (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meadjun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12441 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 meadjun.m . . . . . . . . 9 (𝜑𝑀 ∈ Meas)
3 meadjun.x . . . . . . . . 9 𝑆 = dom 𝑀
42, 3meaf 41165 . . . . . . . 8 (𝜑𝑀:𝑆⟶(0[,]+∞))
5 meadjun.b . . . . . . . 8 (𝜑𝐵𝑆)
64, 5ffvelrnd 6515 . . . . . . 7 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
71, 6sseldi 3734 . . . . . 6 (𝜑 → (𝑀𝐵) ∈ ℝ*)
8 xaddid2 12258 . . . . . 6 ((𝑀𝐵) ∈ ℝ* → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
109eqcomd 2758 . . . 4 (𝜑 → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
1110adantr 472 . . 3 ((𝜑𝐴 = ∅) → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
12 uneq1 3895 . . . . . 6 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
13 0un 39706 . . . . . . 7 (∅ ∪ 𝐵) = 𝐵
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (∅ ∪ 𝐵) = 𝐵)
1512, 14eqtrd 2786 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = 𝐵)
1615fveq2d 6348 . . . 4 (𝐴 = ∅ → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
1716adantl 473 . . 3 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
18 fveq2 6344 . . . . . 6 (𝐴 = ∅ → (𝑀𝐴) = (𝑀‘∅))
1918adantl 473 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀𝐴) = (𝑀‘∅))
202mea0 41166 . . . . . 6 (𝜑 → (𝑀‘∅) = 0)
2120adantr 472 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
2219, 21eqtrd 2786 . . . 4 ((𝜑𝐴 = ∅) → (𝑀𝐴) = 0)
2322oveq1d 6820 . . 3 ((𝜑𝐴 = ∅) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = (0 +𝑒 (𝑀𝐵)))
2411, 17, 233eqtr4d 2796 . 2 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
25 simpl 474 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
26 meadjun.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
2726ad2antrr 764 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴𝐵) = ∅)
28 inidm 3957 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
2928eqcomi 2761 . . . . . . . . . 10 𝐴 = (𝐴𝐴)
30 ineq2 3943 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
3129, 30syl5req 2799 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
3231adantl 473 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
33 neqne 2932 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
3433adantr 472 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅)
3532, 34eqnetrd 2991 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) ≠ ∅)
3635neneqd 2929 . . . . . 6 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3736adantll 752 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3827, 37pm2.65da 601 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵)
3938neqned 2931 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝐵)
40 meadjun.a . . . . . . . 8 (𝜑𝐴𝑆)
41 uniprg 4594 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
4240, 5, 41syl2anc 696 . . . . . . 7 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
4342eqcomd 2758 . . . . . 6 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
4443fveq2d 6348 . . . . 5 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4544adantr 472 . . . 4 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4640, 5prssd 4491 . . . . . 6 (𝜑 → {𝐴, 𝐵} ⊆ 𝑆)
47 prfi 8392 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
48 isfinite 8714 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4948biimpi 206 . . . . . . . . 9 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
50 sdomdom 8141 . . . . . . . . 9 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
5149, 50syl 17 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
5247, 51ax-mp 5 . . . . . . 7 {𝐴, 𝐵} ≼ ω
5352a1i 11 . . . . . 6 (𝜑 → {𝐴, 𝐵} ≼ ω)
54 disjxsn 4790 . . . . . . . . . 10 Disj 𝑥 ∈ {𝐵}𝑥
5554a1i 11 . . . . . . . . 9 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐵}𝑥)
56 preq1 4404 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
57 dfsn2 4326 . . . . . . . . . . . . 13 {𝐵} = {𝐵, 𝐵}
5857eqcomi 2761 . . . . . . . . . . . 12 {𝐵, 𝐵} = {𝐵}
5958a1i 11 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
6056, 59eqtrd 2786 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
6160disjeq1d 4772 . . . . . . . . 9 (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥Disj 𝑥 ∈ {𝐵}𝑥))
6255, 61mpbird 247 . . . . . . . 8 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
6362adantl 473 . . . . . . 7 ((𝜑𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
64 simpl 474 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑)
65 neqne 2932 . . . . . . . . 9 𝐴 = 𝐵𝐴𝐵)
6665adantl 473 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
6726adantr 472 . . . . . . . . 9 ((𝜑𝐴𝐵) → (𝐴𝐵) = ∅)
6840adantr 472 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝑆)
695adantr 472 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵𝑆)
70 simpr 479 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
71 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
72 id 22 . . . . . . . . . . 11 (𝑥 = 𝐵𝑥 = 𝐵)
7371, 72disjprg 4792 . . . . . . . . . 10 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7468, 69, 70, 73syl3anc 1473 . . . . . . . . 9 ((𝜑𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7567, 74mpbird 247 . . . . . . . 8 ((𝜑𝐴𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7664, 66, 75syl2anc 696 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7763, 76pm2.61dan 867 . . . . . 6 (𝜑Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
782, 3, 46, 53, 77meadjuni 41169 . . . . 5 (𝜑 → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
7978adantr 472 . . . 4 ((𝜑𝐴𝐵) → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
804, 40ffvelrnd 6515 . . . . . . 7 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
8180adantr 472 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐴) ∈ (0[,]+∞))
826adantr 472 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ (0[,]+∞))
83 fveq2 6344 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
84 fveq2 6344 . . . . . 6 (𝑥 = 𝐵 → (𝑀𝑥) = (𝑀𝐵))
8568, 69, 81, 82, 83, 84, 70sge0pr 41106 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
864, 46fssresd 6224 . . . . . . . . 9 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
8786feqmptd 6403 . . . . . . . 8 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)))
88 fvres 6360 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀𝑥))
8988mpteq2ia 4884 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))
9089a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9187, 90eqtrd 2786 . . . . . . 7 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9291fveq2d 6348 . . . . . 6 (𝜑 → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
9392adantr 472 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
94 eqidd 2753 . . . . 5 ((𝜑𝐴𝐵) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9585, 93, 943eqtr4d 2796 . . . 4 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9645, 79, 953eqtrd 2790 . . 3 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9725, 39, 96syl2anc 696 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9824, 97pm2.61dan 867 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wne 2924  cun 3705  cin 3706  c0 4050  {csn 4313  {cpr 4315   cuni 4580  Disj wdisj 4764   class class class wbr 4796  cmpt 4873  dom cdm 5258  cres 5260  cfv 6041  (class class class)co 6805  ωcom 7222  cdom 8111  csdm 8112  Fincfn 8113  0cc0 10120  +∞cpnf 10255  *cxr 10257   +𝑒 cxad 12129  [,]cicc 12363  Σ^csumge0 41074  Meascmea 41161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-disj 4765  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-xadd 12132  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-sumge0 41075  df-mea 41162
This theorem is referenced by:  meassle  41175  meaunle  41176  meadjunre  41188
  Copyright terms: Public domain W3C validator