Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiun Structured version   Visualization version   GIF version

Theorem meadjiun 41001
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiun.1 𝑘𝜑
meadjiun.m (𝜑𝑀 ∈ Meas)
meadjiun.s 𝑆 = dom 𝑀
meadjiun.b ((𝜑𝑘𝐴) → 𝐵𝑆)
meadjiun.a (𝜑𝐴 ≼ ω)
meadjiun.dj (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
meadjiun (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem meadjiun
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meadjiun.1 . . . . 5 𝑘𝜑
2 meadjiun.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑆)
32ex 449 . . . . 5 (𝜑 → (𝑘𝐴𝐵𝑆))
41, 3ralrimi 2986 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
5 dfiun3g 5410 . . . 4 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
64, 5syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
76fveq2d 6233 . 2 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (𝑀 ran (𝑘𝐴𝐵)))
8 meadjiun.m . . 3 (𝜑𝑀 ∈ Meas)
9 meadjiun.s . . 3 𝑆 = dom 𝑀
10 eqid 2651 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1110rnmptss 6432 . . . 4 (∀𝑘𝐴 𝐵𝑆 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
124, 11syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
13 meadjiun.a . . . 4 (𝜑𝐴 ≼ ω)
14 1stcrestlem 21303 . . . 4 (𝐴 ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
1513, 14syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
16 meadjiun.dj . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
1710disjrnmpt2 39689 . . . 4 (Disj 𝑘𝐴 𝐵Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
1816, 17syl 17 . . 3 (𝜑Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
198, 9, 12, 15, 18meadjuni 40992 . 2 (𝜑 → (𝑀 ran (𝑘𝐴𝐵)) = (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))))
20 reldom 8003 . . . . . 6 Rel ≼
21 brrelex 5190 . . . . . 6 ((Rel ≼ ∧ 𝐴 ≼ ω) → 𝐴 ∈ V)
2220, 21mpan 706 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
2313, 22syl 17 . . . 4 (𝜑𝐴 ∈ V)
241, 2, 10fmptdf 6427 . . . 4 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
25 fveq2 6229 . . . . . 6 (𝑗 = 𝑖 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑖))
2625neeq1d 2882 . . . . 5 (𝑗 = 𝑖 → (((𝑘𝐴𝐵)‘𝑗) ≠ ∅ ↔ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅))
2726cbvrabv 3230 . . . 4 {𝑗𝐴 ∣ ((𝑘𝐴𝐵)‘𝑗) ≠ ∅} = {𝑖𝐴 ∣ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅}
28 simpr 476 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖𝐴)
29 nfv 1883 . . . . . . . . . . 11 𝑘 𝑖𝐴
301, 29nfan 1868 . . . . . . . . . 10 𝑘(𝜑𝑖𝐴)
31 nfcv 2793 . . . . . . . . . . . 12 𝑘𝑖
3231nfcsb1 3581 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵
33 nfcv 2793 . . . . . . . . . . 11 𝑘𝑆
3432, 33nfel 2806 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵𝑆
3530, 34nfim 1865 . . . . . . . . 9 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
36 eleq1 2718 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
3736anbi2d 740 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
38 csbeq1a 3575 . . . . . . . . . . 11 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
3938eleq1d 2715 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
4037, 39imbi12d 333 . . . . . . . . 9 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵𝑆) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)))
4135, 40, 2chvar 2298 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
4231, 32, 38, 10fvmptf 6340 . . . . . . . 8 ((𝑖𝐴𝑖 / 𝑘𝐵𝑆) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4328, 41, 42syl2anc 694 . . . . . . 7 ((𝜑𝑖𝐴) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4443disjeq2dv 4657 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑖𝐴 𝑖 / 𝑘𝐵))
45 nfcv 2793 . . . . . . . . 9 𝑖𝐵
4645, 32, 38cbvdisj 4662 . . . . . . . 8 (Disj 𝑘𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑘𝐵)
4746bicomi 214 . . . . . . 7 (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵)
4847a1i 11 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵))
4944, 48bitrd 268 . . . . 5 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑘𝐴 𝐵))
5016, 49mpbird 247 . . . 4 (𝜑Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖))
518, 9, 23, 24, 27, 50meadjiunlem 41000 . . 3 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))))
5245, 32, 38cbvmpt 4782 . . . . . . 7 (𝑘𝐴𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵)
5352coeq2i 5315 . . . . . 6 (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵))
5453a1i 11 . . . . 5 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)))
55 eqidd 2652 . . . . . 6 (𝜑 → (𝑖𝐴𝑖 / 𝑘𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵))
568, 9meaf 40988 . . . . . . 7 (𝜑𝑀:𝑆⟶(0[,]+∞))
5756feqmptd 6288 . . . . . 6 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
58 fveq2 6229 . . . . . 6 (𝑦 = 𝑖 / 𝑘𝐵 → (𝑀𝑦) = (𝑀𝑖 / 𝑘𝐵))
5941, 55, 57, 58fmptco 6436 . . . . 5 (𝜑 → (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)))
60 nfcv 2793 . . . . . . . 8 𝑖(𝑀𝐵)
61 nfcv 2793 . . . . . . . . 9 𝑘𝑀
6261, 32nffv 6236 . . . . . . . 8 𝑘(𝑀𝑖 / 𝑘𝐵)
6338fveq2d 6233 . . . . . . . 8 (𝑘 = 𝑖 → (𝑀𝐵) = (𝑀𝑖 / 𝑘𝐵))
6460, 62, 63cbvmpt 4782 . . . . . . 7 (𝑘𝐴 ↦ (𝑀𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵))
6564eqcomi 2660 . . . . . 6 (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵))
6665a1i 11 . . . . 5 (𝜑 → (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6754, 59, 663eqtrd 2689 . . . 4 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6867fveq2d 6233 . . 3 (𝜑 → (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
6951, 68eqtrd 2685 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
707, 19, 693eqtrd 2689 1 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wnf 1748  wcel 2030  wne 2823  wral 2941  {crab 2945  Vcvv 3231  csb 3566  wss 3607  c0 3948   cuni 4468   ciun 4552  Disj wdisj 4652   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  cres 5145  ccom 5147  Rel wrel 5148  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  0cc0 9974  +∞cpnf 10109  [,]cicc 12216  Σ^csumge0 40897  Meascmea 40984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-sumge0 40898  df-mea 40985
This theorem is referenced by:  meaiunlelem  41003  meaiuninclem  41015  vonct  41228
  Copyright terms: Public domain W3C validator