![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meacl | Structured version Visualization version GIF version |
Description: The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meacl.1 | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meacl.2 | ⊢ 𝑆 = dom 𝑀 |
meacl.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
meacl | ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | meacl.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | meacl.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
4 | meacl.2 | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
5 | 3, 4 | meaf 41188 | . . 3 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
6 | 5 | ffvelrnda 6501 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
7 | 1, 2, 6 | syl2anc 693 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 ∈ wcel 2143 dom cdm 5248 ‘cfv 6030 (class class class)co 6791 0cc0 10136 +∞cpnf 10271 [,]cicc 12382 Meascmea 41184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pr 5033 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-id 5156 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-mea 41185 |
This theorem is referenced by: meaxrcl 41196 meassle 41198 meaiunlelem 41203 meage0 41210 voncl 41401 |
Copyright terms: Public domain | W3C validator |