![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mea0 | Structured version Visualization version GIF version |
Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
mea0.1 | ⊢ (𝜑 → 𝑀 ∈ Meas) |
Ref | Expression |
---|---|
mea0 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mea0.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | ismea 41185 | . . 3 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
4 | 3 | simplrd 753 | 1 ⊢ (𝜑 → (𝑀‘∅) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∅c0 4063 𝒫 cpw 4297 ∪ cuni 4574 Disj wdisj 4754 class class class wbr 4786 dom cdm 5249 ↾ cres 5251 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ωcom 7212 ≼ cdom 8107 0cc0 10138 +∞cpnf 10273 [,]cicc 12383 SAlgcsalg 41045 Σ^csumge0 41096 Meascmea 41183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-mea 41184 |
This theorem is referenced by: meadjun 41196 meadjiunlem 41199 vonioo 41416 vonicc 41419 |
Copyright terms: Public domain | W3C validator |