HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1lem2 Structured version   Visualization version   GIF version

Theorem mdslmd1lem2 29313
Description: Lemma for mdslmd1i 29316. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
mdslmd1lem.5 𝑅C
Assertion
Ref Expression
mdslmd1lem2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))

Proof of Theorem mdslmd1lem2
StepHypRef Expression
1 ssrin 3871 . . . 4 (𝑅𝐷 → (𝑅𝐵) ⊆ (𝐷𝐵))
21adantl 481 . . 3 (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (𝑅𝐵) ⊆ (𝐷𝐵))
32imim1i 63 . 2 (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
4 simpllr 815 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐵 𝑀* 𝐴)
5 mdslmd.3 . . . . . . . . . . . 12 𝐶C
6 mdslmd1lem.5 . . . . . . . . . . . 12 𝑅C
75, 6chub2i 28457 . . . . . . . . . . 11 𝐶 ⊆ (𝑅 𝐶)
8 sstr 3644 . . . . . . . . . . 11 ((𝐴𝐶𝐶 ⊆ (𝑅 𝐶)) → 𝐴 ⊆ (𝑅 𝐶))
97, 8mpan2 707 . . . . . . . . . 10 (𝐴𝐶𝐴 ⊆ (𝑅 𝐶))
109ad2antrr 762 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 𝐶))
1110ad2antlr 763 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 𝐶))
12 simplr 807 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴𝐷)
1312ad2antlr 763 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐷)
1411, 13ssind 3870 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ ((𝑅 𝐶) ∩ 𝐷))
15 ssin 3868 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
16 mdslmd.4 . . . . . . . . . . . . 13 𝐷C
175, 16chincli 28447 . . . . . . . . . . . 12 (𝐶𝐷) ∈ C
1817, 6chub2i 28457 . . . . . . . . . . 11 (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))
19 sstr 3644 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ (𝑅 (𝐶𝐷))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2018, 19mpan2 707 . . . . . . . . . 10 (𝐴 ⊆ (𝐶𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2115, 20sylbi 207 . . . . . . . . 9 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2221adantr 480 . . . . . . . 8 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2322ad2antlr 763 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅 (𝐶𝐷)))
2414, 23ssind 3870 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))))
25 inss2 3867 . . . . . . . . . . 11 ((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷
26 sstr 3644 . . . . . . . . . . 11 ((((𝑅 𝐶) ∩ 𝐷) ⊆ 𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2725, 26mpan 706 . . . . . . . . . 10 (𝐷 ⊆ (𝐴 𝐵) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2827ad2antll 765 . . . . . . . . 9 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
2928ad2antlr 763 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵))
30 sstr 3644 . . . . . . . . . . . . . 14 ((𝑅𝐷𝐷 ⊆ (𝐴 𝐵)) → 𝑅 ⊆ (𝐴 𝐵))
3130ancoms 468 . . . . . . . . . . . . 13 ((𝐷 ⊆ (𝐴 𝐵) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
3231ad2ant2l 797 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3332adantll 750 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
3433adantll 750 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝑅 ⊆ (𝐴 𝐵))
35 ssinss1 3874 . . . . . . . . . . . 12 (𝐶 ⊆ (𝐴 𝐵) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3635ad2antrl 764 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3736ad2antlr 763 . . . . . . . . . 10 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐶𝐷) ⊆ (𝐴 𝐵))
3834, 37jca 553 . . . . . . . . 9 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
39 mdslmd.1 . . . . . . . . . . 11 𝐴C
40 mdslmd.2 . . . . . . . . . . 11 𝐵C
4139, 40chjcli 28444 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
426, 17, 41chlubi 28458 . . . . . . . . 9 ((𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)) ↔ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4338, 42sylib 208 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
4429, 43jca 553 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
456, 5chjcli 28444 . . . . . . . . 9 (𝑅 𝐶) ∈ C
4645, 16chincli 28447 . . . . . . . 8 ((𝑅 𝐶) ∩ 𝐷) ∈ C
476, 17chjcli 28444 . . . . . . . 8 (𝑅 (𝐶𝐷)) ∈ C
4846, 47, 41chlubi 28458 . . . . . . 7 ((((𝑅 𝐶) ∩ 𝐷) ⊆ (𝐴 𝐵) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
4944, 48sylib 208 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵))
5039, 40, 46, 47mdslle1i 29304 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ (((𝑅 𝐶) ∩ 𝐷) ∩ (𝑅 (𝐶𝐷))) ∧ (((𝑅 𝐶) ∩ 𝐷) ∨ (𝑅 (𝐶𝐷))) ⊆ (𝐴 𝐵)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
514, 24, 49, 50syl3anc 1366 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
52 inindir 3864 . . . . . . 7 (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) = (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵))
53 sstr 3644 . . . . . . . . . . . . . 14 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5415, 53sylanb 488 . . . . . . . . . . . . 13 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴𝑅)
5554ad2ant2r 798 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝑅)
56 simplll 813 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴𝐶)
5755, 56ssind 3870 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐴 ⊆ (𝑅𝐶))
58 simplrl 817 . . . . . . . . . . . . 13 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → 𝐶 ⊆ (𝐴 𝐵))
5933, 58jca 553 . . . . . . . . . . . 12 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)))
606, 5, 41chlubi 28458 . . . . . . . . . . . 12 ((𝑅 ⊆ (𝐴 𝐵) ∧ 𝐶 ⊆ (𝐴 𝐵)) ↔ (𝑅 𝐶) ⊆ (𝐴 𝐵))
6159, 60sylib 208 . . . . . . . . . . 11 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝑅 𝐶) ⊆ (𝐴 𝐵))
6257, 61jca 553 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵)))
6339, 40, 6, 5mdslj1i 29306 . . . . . . . . . 10 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅𝐶) ∧ (𝑅 𝐶) ⊆ (𝐴 𝐵))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6462, 63sylan2 490 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6564anassrs 681 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 𝐶) ∩ 𝐵) = ((𝑅𝐵) ∨ (𝐶𝐵)))
6665ineq1d 3846 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐵) ∩ (𝐷𝐵)) = (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
6752, 66syl5req 2698 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵))
6815biimpi 206 . . . . . . . . . . . . 13 ((𝐴𝐶𝐴𝐷) → 𝐴 ⊆ (𝐶𝐷))
6968adantr 480 . . . . . . . . . . . 12 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝐶𝐷))
7054, 69ssind 3870 . . . . . . . . . . 11 (((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) → 𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)))
7131adantll 750 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → 𝑅 ⊆ (𝐴 𝐵))
7235ad2antrr 762 . . . . . . . . . . . . 13 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝐶𝐷) ⊆ (𝐴 𝐵))
7371, 72jca 553 . . . . . . . . . . . 12 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 ⊆ (𝐴 𝐵) ∧ (𝐶𝐷) ⊆ (𝐴 𝐵)))
7473, 42sylib 208 . . . . . . . . . . 11 (((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷) → (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))
7570, 74anim12i 589 . . . . . . . . . 10 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶𝐷) ⊆ 𝑅) ∧ ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ∧ 𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7675an4s 886 . . . . . . . . 9 ((((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵)))
7739, 40, 6, 17mdslj1i 29306 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝑅 ∩ (𝐶𝐷)) ∧ (𝑅 (𝐶𝐷)) ⊆ (𝐴 𝐵))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7876, 77sylan2 490 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷))) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
7978anassrs 681 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅 (𝐶𝐷)) ∩ 𝐵) = ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)))
80 inindir 3864 . . . . . . . . 9 ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵))
8180a1i 11 . . . . . . . 8 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝐶𝐷) ∩ 𝐵) = ((𝐶𝐵) ∩ (𝐷𝐵)))
8281oveq2d 6706 . . . . . . 7 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐷) ∩ 𝐵)) = ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
8379, 82eqtr2d 2686 . . . . . 6 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑅 (𝐶𝐷)) ∩ 𝐵))
8467, 83sseq12d 3667 . . . . 5 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑅 𝐶) ∩ 𝐷) ∩ 𝐵) ⊆ ((𝑅 (𝐶𝐷)) ∩ 𝐵)))
8551, 84bitr4d 271 . . . 4 ((((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) ∧ ((𝐶𝐷) ⊆ 𝑅𝑅𝐷)) → (((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)) ↔ (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
8685exbiri 651 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
8786a2d 29 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
883, 87syl5 34 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (((𝑅𝐵) ⊆ (𝐷𝐵) → (((𝑅𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑅𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑅𝑅𝐷) → ((𝑅 𝐶) ∩ 𝐷) ⊆ (𝑅 (𝐶𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cin 3606  wss 3607   class class class wbr 4685  (class class class)co 6690   C cch 27914   chj 27918   𝑀 cmd 27951   𝑀* cdmd 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-chj 28297  df-md 29267  df-dmd 29268
This theorem is referenced by:  mdslmd1lem4  29315
  Copyright terms: Public domain W3C validator