Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslj2i Structured version   Visualization version   GIF version

Theorem mdslj2i 29509
 Description: Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslle1.1 𝐴C
mdslle1.2 𝐵C
mdslle1.3 𝐶C
mdslle1.4 𝐷C
Assertion
Ref Expression
mdslj2i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶𝐷) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))

Proof of Theorem mdslj2i
StepHypRef Expression
1 mdslle1.3 . . . 4 𝐶C
2 mdslle1.4 . . . 4 𝐷C
3 mdslle1.1 . . . 4 𝐴C
41, 2, 3lejdiri 28728 . . 3 ((𝐶𝐷) ∨ 𝐴) ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴))
54a1i 11 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶𝐷) ∨ 𝐴) ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)))
6 ssin 3978 . . . . 5 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ↔ (𝐴𝐵) ⊆ (𝐶𝐷))
76bicomi 214 . . . 4 ((𝐴𝐵) ⊆ (𝐶𝐷) ↔ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷))
8 mdslle1.2 . . . . . 6 𝐵C
91, 2, 8chlubi 28660 . . . . 5 ((𝐶𝐵𝐷𝐵) ↔ (𝐶 𝐷) ⊆ 𝐵)
109bicomi 214 . . . 4 ((𝐶 𝐷) ⊆ 𝐵 ↔ (𝐶𝐵𝐷𝐵))
117, 10anbi12i 735 . . 3 (((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) ↔ (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)))
12 simpr 479 . . . . . 6 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
133, 1chub2i 28659 . . . . . . . 8 𝐴 ⊆ (𝐶 𝐴)
143, 2chub2i 28659 . . . . . . . 8 𝐴 ⊆ (𝐷 𝐴)
1513, 14ssini 3979 . . . . . . 7 𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴))
1615a1i 11 . . . . . 6 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) → 𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)))
171, 8, 3chlej1i 28662 . . . . . . . . 9 (𝐶𝐵 → (𝐶 𝐴) ⊆ (𝐵 𝐴))
188, 3chjcomi 28657 . . . . . . . . 9 (𝐵 𝐴) = (𝐴 𝐵)
1917, 18syl6sseq 3792 . . . . . . . 8 (𝐶𝐵 → (𝐶 𝐴) ⊆ (𝐴 𝐵))
20 ssinss1 3984 . . . . . . . 8 ((𝐶 𝐴) ⊆ (𝐴 𝐵) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
2119, 20syl 17 . . . . . . 7 (𝐶𝐵 → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
2221adantr 472 . . . . . 6 ((𝐶𝐵𝐷𝐵) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
231, 3chjcli 28646 . . . . . . . . 9 (𝐶 𝐴) ∈ C
242, 3chjcli 28646 . . . . . . . . 9 (𝐷 𝐴) ∈ C
2523, 24chincli 28649 . . . . . . . 8 ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∈ C
263, 8, 253pm3.2i 1424 . . . . . . 7 (𝐴C𝐵C ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∈ C )
27 dmdsl3 29504 . . . . . . 7 (((𝐴C𝐵C ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∈ C ) ∧ (𝐵 𝑀* 𝐴𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵))) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
2826, 27mpan 708 . . . . . 6 ((𝐵 𝑀* 𝐴𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∧ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐴 𝐵)) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
2912, 16, 22, 28syl3an 1164 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
30 inss1 3976 . . . . . . . . 9 ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐶 𝐴)
31 ssrin 3981 . . . . . . . . 9 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐶 𝐴) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵))
3230, 31ax-mp 5 . . . . . . . 8 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵)
33 simpl 474 . . . . . . . . 9 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐴 𝑀 𝐵)
34 simpl 474 . . . . . . . . 9 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) → (𝐴𝐵) ⊆ 𝐶)
35 simpl 474 . . . . . . . . 9 ((𝐶𝐵𝐷𝐵) → 𝐶𝐵)
363, 8, 13pm3.2i 1424 . . . . . . . . . 10 (𝐴C𝐵C𝐶C )
37 mdsl3 29505 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐶𝐶𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
3836, 37mpan 708 . . . . . . . . 9 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐶𝐶𝐵) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
3933, 34, 35, 38syl3an 1164 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
4032, 39syl5sseq 3794 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ 𝐶)
41 inss2 3977 . . . . . . . . 9 ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐷 𝐴)
42 ssrin 3981 . . . . . . . . 9 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ (𝐷 𝐴) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐷 𝐴) ∩ 𝐵))
4341, 42ax-mp 5 . . . . . . . 8 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ ((𝐷 𝐴) ∩ 𝐵)
44 simpr 479 . . . . . . . . 9 (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) → (𝐴𝐵) ⊆ 𝐷)
45 simpr 479 . . . . . . . . 9 ((𝐶𝐵𝐷𝐵) → 𝐷𝐵)
463, 8, 23pm3.2i 1424 . . . . . . . . . 10 (𝐴C𝐵C𝐷C )
47 mdsl3 29505 . . . . . . . . . 10 (((𝐴C𝐵C𝐷C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐷𝐷𝐵)) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
4846, 47mpan 708 . . . . . . . . 9 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐷𝐷𝐵) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
4933, 44, 45, 48syl3an 1164 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
5043, 49syl5sseq 3794 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ 𝐷)
5140, 50ssind 3980 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ (𝐶𝐷))
5225, 8chincli 28649 . . . . . . 7 (((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∈ C
531, 2chincli 28649 . . . . . . 7 (𝐶𝐷) ∈ C
5452, 53, 3chlej1i 28662 . . . . . 6 ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ⊆ (𝐶𝐷) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) ⊆ ((𝐶𝐷) ∨ 𝐴))
5551, 54syl 17 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((((𝐶 𝐴) ∩ (𝐷 𝐴)) ∩ 𝐵) ∨ 𝐴) ⊆ ((𝐶𝐷) ∨ 𝐴))
5629, 55eqsstr3d 3781 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ ((𝐶𝐷) ∨ 𝐴))
57563expb 1114 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (((𝐴𝐵) ⊆ 𝐶 ∧ (𝐴𝐵) ⊆ 𝐷) ∧ (𝐶𝐵𝐷𝐵))) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ ((𝐶𝐷) ∨ 𝐴))
5811, 57sylan2b 493 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶 𝐴) ∩ (𝐷 𝐴)) ⊆ ((𝐶𝐷) ∨ 𝐴))
595, 58eqssd 3761 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶𝐷) ∨ 𝐴) = ((𝐶 𝐴) ∩ (𝐷 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ∩ cin 3714   ⊆ wss 3715   class class class wbr 4804  (class class class)co 6814   Cℋ cch 28116   ∨ℋ chj 28120   𝑀ℋ cmd 28153   𝑀ℋ* cdmd 28154 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cc 9469  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvmulass 28194  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197  ax-hfi 28266  ax-his1 28269  ax-his2 28270  ax-his3 28271  ax-his4 28272  ax-hcompl 28389 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-cn 21253  df-cnp 21254  df-lm 21255  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cfil 23273  df-cau 23274  df-cmet 23275  df-grpo 27677  df-gid 27678  df-ginv 27679  df-gdiv 27680  df-ablo 27729  df-vc 27744  df-nv 27777  df-va 27780  df-ba 27781  df-sm 27782  df-0v 27783  df-vs 27784  df-nmcv 27785  df-ims 27786  df-dip 27886  df-ssp 27907  df-ph 27998  df-cbn 28049  df-hnorm 28155  df-hba 28156  df-hvsub 28158  df-hlim 28159  df-hcau 28160  df-sh 28394  df-ch 28408  df-oc 28439  df-ch0 28440  df-shs 28497  df-chj 28499  df-md 29469  df-dmd 29470 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator