Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslj1i Structured version   Visualization version   GIF version

Theorem mdslj1i 29518
 Description: Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslle1.1 𝐴C
mdslle1.2 𝐵C
mdslle1.3 𝐶C
mdslle1.4 𝐷C
Assertion
Ref Expression
mdslj1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))

Proof of Theorem mdslj1i
StepHypRef Expression
1 ssin 3983 . . . . 5 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
21bicomi 214 . . . 4 (𝐴 ⊆ (𝐶𝐷) ↔ (𝐴𝐶𝐴𝐷))
3 mdslle1.3 . . . . . 6 𝐶C
4 mdslle1.4 . . . . . 6 𝐷C
5 mdslle1.1 . . . . . . 7 𝐴C
6 mdslle1.2 . . . . . . 7 𝐵C
75, 6chjcli 28656 . . . . . 6 (𝐴 𝐵) ∈ C
83, 4, 7chlubi 28670 . . . . 5 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
98bicomi 214 . . . 4 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))
102, 9anbi12i 612 . . 3 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))
11 simpr 471 . . . . . . . . . 10 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐵 𝑀* 𝐴)
12 simpl 468 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) → 𝐴𝐶)
13 simpl 468 . . . . . . . . . 10 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐶 ⊆ (𝐴 𝐵))
145, 6, 33pm3.2i 1423 . . . . . . . . . . 11 (𝐴C𝐵C𝐶C )
15 dmdsl3 29514 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
1614, 15mpan 670 . . . . . . . . . 10 ((𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵)) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
1711, 12, 13, 16syl3an 1163 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
183, 6chincli 28659 . . . . . . . . . . 11 (𝐶𝐵) ∈ C
194, 6chincli 28659 . . . . . . . . . . 11 (𝐷𝐵) ∈ C
2018, 19chub1i 28668 . . . . . . . . . 10 (𝐶𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵))
2118, 19chjcli 28656 . . . . . . . . . . 11 ((𝐶𝐵) ∨ (𝐷𝐵)) ∈ C
2218, 21, 5chlej1i 28672 . . . . . . . . . 10 ((𝐶𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) → ((𝐶𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
2320, 22mp1i 13 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
2417, 23eqsstr3d 3789 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐶 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
25 simpr 471 . . . . . . . . . 10 ((𝐴𝐶𝐴𝐷) → 𝐴𝐷)
26 simpr 471 . . . . . . . . . 10 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → 𝐷 ⊆ (𝐴 𝐵))
275, 6, 43pm3.2i 1423 . . . . . . . . . . 11 (𝐴C𝐵C𝐷C )
28 dmdsl3 29514 . . . . . . . . . . 11 (((𝐴C𝐵C𝐷C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
2927, 28mpan 670 . . . . . . . . . 10 ((𝐵 𝑀* 𝐴𝐴𝐷𝐷 ⊆ (𝐴 𝐵)) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
3011, 25, 26, 29syl3an 1163 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) = 𝐷)
3119, 18chub2i 28669 . . . . . . . . . 10 (𝐷𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵))
3219, 21, 5chlej1i 28672 . . . . . . . . . 10 ((𝐷𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) → ((𝐷𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3331, 32mp1i 13 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐷𝐵) ∨ 𝐴) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3430, 33eqsstr3d 3789 . . . . . . . 8 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → 𝐷 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3524, 34jca 501 . . . . . . 7 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∧ 𝐷 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴)))
3621, 5chjcli 28656 . . . . . . . 8 (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∈ C
373, 4, 36chlubi 28670 . . . . . . 7 ((𝐶 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∧ 𝐷 ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴)) ↔ (𝐶 𝐷) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3835, 37sylib 208 . . . . . 6 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → (𝐶 𝐷) ⊆ (((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴))
3938ssrind 3988 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵))
40 simpl 468 . . . . . 6 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) → 𝐴 𝑀 𝐵)
41 ssrin 3986 . . . . . . . 8 (𝐴𝐶 → (𝐴𝐵) ⊆ (𝐶𝐵))
4241, 20syl6ss 3764 . . . . . . 7 (𝐴𝐶 → (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
4342adantr 466 . . . . . 6 ((𝐴𝐶𝐴𝐷) → (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
44 inss2 3982 . . . . . . . 8 (𝐶𝐵) ⊆ 𝐵
45 inss2 3982 . . . . . . . 8 (𝐷𝐵) ⊆ 𝐵
4618, 19, 6chlubi 28670 . . . . . . . . 9 (((𝐶𝐵) ⊆ 𝐵 ∧ (𝐷𝐵) ⊆ 𝐵) ↔ ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵)
4746bicomi 214 . . . . . . . 8 (((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵 ↔ ((𝐶𝐵) ⊆ 𝐵 ∧ (𝐷𝐵) ⊆ 𝐵))
4844, 45, 47mpbir2an 690 . . . . . . 7 ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵
4948a1i 11 . . . . . 6 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) → ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵)
505, 6, 213pm3.2i 1423 . . . . . . 7 (𝐴C𝐵C ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ∈ C )
51 mdsl3 29515 . . . . . . 7 (((𝐴C𝐵C ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ∈ C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵)) → ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
5250, 51mpan 670 . . . . . 6 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)) ∧ ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ 𝐵) → ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
5340, 43, 49, 52syl3an 1163 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((((𝐶𝐵) ∨ (𝐷𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
5439, 53sseqtrd 3790 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
55543expb 1113 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
5610, 55sylan2b 581 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) ⊆ ((𝐶𝐵) ∨ (𝐷𝐵)))
573, 4, 6lediri 28736 . . 3 ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ ((𝐶 𝐷) ∩ 𝐵)
5857a1i 11 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ (𝐷𝐵)) ⊆ ((𝐶 𝐷) ∩ 𝐵))
5956, 58eqssd 3769 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((𝐶 𝐷) ∩ 𝐵) = ((𝐶𝐵) ∨ (𝐷𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ∩ cin 3722   ⊆ wss 3723   class class class wbr 4786  (class class class)co 6793   Cℋ cch 28126   ∨ℋ chj 28130   𝑀ℋ cmd 28163   𝑀ℋ* cdmd 28164 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr1 28205  ax-hvdistr2 28206  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281  ax-his4 28282  ax-hcompl 28399 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-cn 21252  df-cnp 21253  df-lm 21254  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cfil 23272  df-cau 23273  df-cmet 23274  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-vs 27794  df-nmcv 27795  df-ims 27796  df-dip 27896  df-ssp 27917  df-ph 28008  df-cbn 28059  df-hnorm 28165  df-hba 28166  df-hvsub 28168  df-hlim 28169  df-hcau 28170  df-sh 28404  df-ch 28418  df-oc 28449  df-ch0 28450  df-shs 28507  df-chj 28509  df-md 29479  df-dmd 29480 This theorem is referenced by:  mdslmd1lem1  29524  mdslmd1lem2  29525
 Copyright terms: Public domain W3C validator