MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem8 Structured version   Visualization version   GIF version

Theorem mdetunilem8 20548
Description: Lemma for mdetuni 20551. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem8.id (𝜑 → (𝐷‘(1r𝐴)) = 0 )
Assertion
Ref Expression
mdetunilem8 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem8
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝜑)
2 mdetuni.n . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
3 enrefg 8104 . . . . . . . . 9 (𝑁 ∈ Fin → 𝑁𝑁)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁𝑁)
5 f1finf1o 8303 . . . . . . . 8 ((𝑁𝑁𝑁 ∈ Fin) → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
64, 2, 5syl2anc 696 . . . . . . 7 (𝜑 → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
76biimpa 502 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸:𝑁1-1-onto𝑁)
8 mdetuni.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mdetuni.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
109matring 20372 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
112, 8, 10syl2anc 696 . . . . . . . 8 (𝜑𝐴 ∈ Ring)
12 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
13 eqid 2724 . . . . . . . . 9 (1r𝐴) = (1r𝐴)
1412, 13ringidcl 18689 . . . . . . . 8 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1511, 14syl 17 . . . . . . 7 (𝜑 → (1r𝐴) ∈ 𝐵)
1615adantr 472 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (1r𝐴) ∈ 𝐵)
17 mdetuni.k . . . . . . 7 𝐾 = (Base‘𝑅)
18 mdetuni.0g . . . . . . 7 0 = (0g𝑅)
19 mdetuni.1r . . . . . . 7 1 = (1r𝑅)
20 mdetuni.pg . . . . . . 7 + = (+g𝑅)
21 mdetuni.tg . . . . . . 7 · = (.r𝑅)
22 mdetuni.ff . . . . . . 7 (𝜑𝐷:𝐵𝐾)
23 mdetuni.al . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
24 mdetuni.li . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
25 mdetuni.sc . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
269, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25mdetunilem7 20547 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁 ∧ (1r𝐴) ∈ 𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
271, 7, 16, 26syl3anc 1439 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
282adantr 472 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑁 ∈ Fin)
29283ad2ant1 1125 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
308adantr 472 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑅 ∈ Ring)
31303ad2ant1 1125 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
32 simp1r 1217 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁1-1𝑁)
33 f1f 6214 . . . . . . . . . 10 (𝐸:𝑁1-1𝑁𝐸:𝑁𝑁)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁𝑁)
35 simp2 1129 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
3634, 35ffvelrnd 6475 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → (𝐸𝑎) ∈ 𝑁)
37 simp3 1130 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
389, 19, 18, 29, 31, 36, 37, 13mat1ov 20377 . . . . . . 7 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → ((𝐸𝑎)(1r𝐴)𝑏) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
3938mpt2eq3dva 6836 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )))
4039fveq2d 6308 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))))
41 mdetunilem8.id . . . . . . . 8 (𝜑 → (𝐷‘(1r𝐴)) = 0 )
4241adantr 472 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(1r𝐴)) = 0 )
4342oveq2d 6781 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ))
44 zrhpsgnmhm 20053 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
458, 2, 44syl2anc 696 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
46 eqid 2724 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
47 eqid 2724 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 17mgpbas 18616 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
4946, 48mhmf 17462 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5045, 49syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5150adantr 472 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
52 eqid 2724 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5352, 46elsymgbas 17923 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
5428, 53syl 17 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
557, 54mpbird 247 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
5651, 55ffvelrnd 6475 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾)
5717, 21, 18ringrz 18709 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5830, 56, 57syl2anc 696 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5943, 58eqtrd 2758 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = 0 )
6027, 40, 593eqtr3d 2766 . . . 4 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
6160ex 449 . . 3 (𝜑 → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
6261adantr 472 . 2 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
63 ibar 526 . . . . . . 7 (𝐸:𝑁𝑁 → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6463adantl 473 . . . . . 6 ((𝜑𝐸:𝑁𝑁) → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
65 dff13 6627 . . . . . 6 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
6664, 65syl6rbbr 279 . . . . 5 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 ↔ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
6766notbid 307 . . . 4 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
68 rexnal 3097 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
69 rexnal 3097 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
70 df-ne 2897 . . . . . . . . . 10 (𝑐𝑑 ↔ ¬ 𝑐 = 𝑑)
7170anbi2i 732 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑))
72 annim 440 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑) ↔ ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
7371, 72bitr2i 265 . . . . . . . 8 (¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7473rexbii 3143 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7569, 74bitr3i 266 . . . . . 6 (¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7675rexbii 3143 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7768, 76bitr3i 266 . . . 4 (¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7867, 77syl6bb 276 . . 3 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑)))
79 simprrl 823 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐸𝑐) = (𝐸𝑑))
80 fveq2 6304 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝐸𝑎) = (𝐸𝑐))
8180eqeq1d 2726 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
8281ifbid 4216 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
83 iftrue 4200 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
8482, 83eqtr4d 2761 . . . . . . . . . . 11 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
85 iffalse 4203 . . . . . . . . . . . 12 𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
86 fveq2 6304 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑑 → (𝐸𝑎) = (𝐸𝑑))
8786eqeq1d 2726 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑑) = 𝑏))
8887ifbid 4216 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
89 iftrue 4200 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
9088, 89eqtr4d 2761 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
91 iffalse 4203 . . . . . . . . . . . . . 14 𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
9291eqcomd 2730 . . . . . . . . . . . . 13 𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9390, 92pm2.61i 176 . . . . . . . . . . . 12 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))
9485, 93syl6reqr 2777 . . . . . . . . . . 11 𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9584, 94pm2.61i 176 . . . . . . . . . 10 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
96 eqeq1 2728 . . . . . . . . . . . . . 14 ((𝐸𝑑) = (𝐸𝑐) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9796eqcoms 2732 . . . . . . . . . . . . 13 ((𝐸𝑐) = (𝐸𝑑) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9897ifbid 4216 . . . . . . . . . . . 12 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑑) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
9998ifeq1d 4212 . . . . . . . . . . 11 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
10099ifeq2d 4213 . . . . . . . . . 10 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
10195, 100syl5eq 2770 . . . . . . . . 9 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
102101mpt2eq3dv 6838 . . . . . . . 8 ((𝐸𝑐) = (𝐸𝑑) → (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))))
103102fveq2d 6308 . . . . . . 7 ((𝐸𝑐) = (𝐸𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
10479, 103syl 17 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
105 simpll 807 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝜑)
106 simprll 821 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑁)
107 simprlr 822 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑑𝑁)
108 simprrr 824 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑑)
109106, 107, 1083jca 1379 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝑐𝑁𝑑𝑁𝑐𝑑))
11017, 19ringidcl 18689 . . . . . . . . . 10 (𝑅 ∈ Ring → 1𝐾)
1118, 110syl 17 . . . . . . . . 9 (𝜑1𝐾)
11217, 18ring0cl 18690 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
1138, 112syl 17 . . . . . . . . 9 (𝜑0𝐾)
114111, 113ifcld 4239 . . . . . . . 8 (𝜑 → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
115114ad3antrrr 768 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑏𝑁) → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
116 simp1ll 1273 . . . . . . . 8 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝜑)
117111, 113ifcld 4239 . . . . . . . 8 (𝜑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
118116, 117syl 17 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
1199, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25, 105, 109, 115, 118mdetunilem2 20542 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))) = 0 )
120104, 119eqtrd 2758 . . . . 5 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
121120expr 644 . . . 4 (((𝜑𝐸:𝑁𝑁) ∧ (𝑐𝑁𝑑𝑁)) → (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
122121rexlimdvva 3140 . . 3 ((𝜑𝐸:𝑁𝑁) → (∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12378, 122sylbid 230 . 2 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12462, 123pm2.61d 170 1 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  wral 3014  wrex 3015  cdif 3677  ifcif 4194  {csn 4285   class class class wbr 4760   × cxp 5216  cres 5220  ccom 5222  wf 5997  1-1wf1 5998  1-1-ontowf1o 6000  cfv 6001  (class class class)co 6765  cmpt2 6767  𝑓 cof 7012  cen 8069  Fincfn 8072  Basecbs 15980  +gcplusg 16064  .rcmulr 16065  0gc0g 16223   MndHom cmhm 17455  SymGrpcsymg 17918  pmSgncpsgn 18030  mulGrpcmgp 18610  1rcur 18622  Ringcrg 18668  ℤRHomczrh 19971   Mat cmat 20336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1578  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-ot 4294  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-tpos 7472  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-sup 8464  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-xnn0 11477  df-z 11491  df-dec 11607  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-word 13406  df-lsw 13407  df-concat 13408  df-s1 13409  df-substr 13410  df-splice 13411  df-reverse 13412  df-s2 13714  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-0g 16225  df-gsum 16226  df-prds 16231  df-pws 16233  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-mhm 17457  df-submnd 17458  df-grp 17547  df-minusg 17548  df-sbg 17549  df-mulg 17663  df-subg 17713  df-ghm 17780  df-gim 17823  df-cntz 17871  df-oppg 17897  df-symg 17919  df-pmtr 17983  df-psgn 18032  df-evpm 18033  df-cmn 18316  df-abl 18317  df-mgp 18611  df-ur 18623  df-ring 18670  df-cring 18671  df-oppr 18744  df-dvdsr 18762  df-unit 18763  df-invr 18793  df-dvr 18804  df-rnghom 18838  df-drng 18872  df-subrg 18901  df-lmod 18988  df-lss 19056  df-sra 19295  df-rgmod 19296  df-cnfld 19870  df-zring 19942  df-zrh 19975  df-dsmm 20199  df-frlm 20214  df-mamu 20313  df-mat 20337
This theorem is referenced by:  mdetunilem9  20549
  Copyright terms: Public domain W3C validator