MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin2 Structured version   Visualization version   GIF version

Theorem mdetrlin2 20636
Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetrlin2.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin2.k 𝐾 = (Base‘𝑅)
mdetrlin2.p + = (+g𝑅)
mdetrlin2.r (𝜑𝑅 ∈ CRing)
mdetrlin2.n (𝜑𝑁 ∈ Fin)
mdetrlin2.x ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
mdetrlin2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetrlin2.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetrlin2.i (𝜑𝐼𝑁)
Assertion
Ref Expression
mdetrlin2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetrlin2
StepHypRef Expression
1 mdetrlin2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2761 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2761 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetrlin2.p . 2 + = (+g𝑅)
5 mdetrlin2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetrlin2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetrlin2.n . . 3 (𝜑𝑁 ∈ Fin)
8 crngring 18779 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
95, 8syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1128 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetrlin2.x . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
12 mdetrlin2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
136, 4ringacl 18799 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
1410, 11, 12, 13syl3anc 1477 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → (𝑋 + 𝑌) ∈ 𝐾)
15 mdetrlin2.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1614, 15ifcld 4276 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) ∈ 𝐾)
172, 6, 3, 7, 5, 16matbas2d 20452 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
1811, 15ifcld 4276 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑍) ∈ 𝐾)
192, 6, 3, 7, 5, 18matbas2d 20452 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
2012, 15ifcld 4276 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑌, 𝑍) ∈ 𝐾)
212, 6, 3, 7, 5, 20matbas2d 20452 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
22 mdetrlin2.i . 2 (𝜑𝐼𝑁)
23 snex 5058 . . . . . . 7 {𝐼} ∈ V
2423a1i 11 . . . . . 6 (𝜑 → {𝐼} ∈ V)
2522snssd 4486 . . . . . . . . 9 (𝜑 → {𝐼} ⊆ 𝑁)
26253ad2ant1 1128 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → {𝐼} ⊆ 𝑁)
27 simp2 1132 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖 ∈ {𝐼})
2826, 27sseldd 3746 . . . . . . 7 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖𝑁)
2928, 11syld3an2 1519 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑋𝐾)
3028, 12syld3an2 1519 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑌𝐾)
31 eqidd 2762 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋))
32 eqidd 2762 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3324, 7, 29, 30, 31, 32offval22 7423 . . . . 5 (𝜑 → ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘𝑓 + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)))
3433eqcomd 2767 . . . 4 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘𝑓 + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)))
35 mpt2snif 6921 . . . 4 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌))
36 mpt2snif 6921 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋)
37 mpt2snif 6921 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)
3836, 37oveq12i 6827 . . . 4 ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘𝑓 + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘𝑓 + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3934, 35, 383eqtr4g 2820 . . 3 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘𝑓 + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
40 ssid 3766 . . . 4 𝑁𝑁
41 resmpt2 6925 . . . 4 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
4225, 40, 41sylancl 697 . . 3 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
43 resmpt2 6925 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
4425, 40, 43sylancl 697 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
45 resmpt2 6925 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4625, 40, 45sylancl 697 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4744, 46oveq12d 6833 . . 3 (𝜑 → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘𝑓 + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘𝑓 + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
4839, 42, 473eqtr4d 2805 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘𝑓 + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))))
49 eldifsni 4467 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝐼)
5049neneqd 2938 . . . . . 6 (𝑖 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑖 = 𝐼)
51 iffalse 4240 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = 𝑍)
52 iffalse 4240 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑍) = 𝑍)
5351, 52eqtr4d 2798 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5450, 53syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
55543ad2ant2 1129 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5655mpt2eq3dva 6886 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
57 difss 3881 . . . 4 (𝑁 ∖ {𝐼}) ⊆ 𝑁
58 resmpt2 6925 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
5957, 40, 58mp2an 710 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))
60 resmpt2 6925 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
6157, 40, 60mp2an 710 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))
6256, 59, 613eqtr4g 2820 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
63 iffalse 4240 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑌, 𝑍) = 𝑍)
6451, 63eqtr4d 2798 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6550, 64syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
66653ad2ant2 1129 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6766mpt2eq3dva 6886 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
68 resmpt2 6925 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
6957, 40, 68mp2an 710 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))
7067, 59, 693eqtr4g 2820 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
711, 2, 3, 4, 5, 17, 19, 21, 22, 48, 62, 70mdetrlin 20631 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1072   = wceq 1632  wcel 2140  Vcvv 3341  cdif 3713  wss 3716  ifcif 4231  {csn 4322   × cxp 5265  cres 5269  cfv 6050  (class class class)co 6815  cmpt2 6817  𝑓 cof 7062  Fincfn 8124  Basecbs 16080  +gcplusg 16164  Ringcrg 18768  CRingccrg 18769   Mat cmat 20436   maDet cmdat 20613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-ot 4331  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-tpos 7523  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-xnn0 11577  df-z 11591  df-dec 11707  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510  df-splice 13511  df-reverse 13512  df-s2 13814  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-mulg 17763  df-subg 17813  df-ghm 17880  df-gim 17923  df-cntz 17971  df-oppg 17997  df-symg 18019  df-pmtr 18083  df-psgn 18132  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-dvr 18904  df-rnghom 18938  df-drng 18972  df-subrg 19001  df-sra 19395  df-rgmod 19396  df-cnfld 19970  df-zring 20042  df-zrh 20075  df-dsmm 20299  df-frlm 20314  df-mat 20437  df-mdet 20614
This theorem is referenced by:  mdetero  20639  madugsum  20672
  Copyright terms: Public domain W3C validator