![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetralt2 | Structured version Visualization version GIF version |
Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetralt2.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetralt2.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetralt2.z | ⊢ 0 = (0g‘𝑅) |
mdetralt2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetralt2.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetralt2.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetralt2.y | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
mdetralt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mdetralt2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
mdetralt2.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
mdetralt2 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetralt2.d | . 2 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | eqid 2651 | . 2 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
3 | eqid 2651 | . 2 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
4 | mdetralt2.z | . 2 ⊢ 0 = (0g‘𝑅) | |
5 | mdetralt2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | mdetralt2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
7 | mdetralt2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
8 | mdetralt2.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
9 | 8 | 3adant2 1100 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
10 | mdetralt2.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
11 | 9, 10 | ifcld 4164 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾) |
12 | 9, 11 | ifcld 4164 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾) |
13 | 2, 6, 3, 7, 5, 12 | matbas2d 20277 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅))) |
14 | mdetralt2.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
15 | mdetralt2.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
16 | mdetralt2.ij | . 2 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
17 | eqidd 2652 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) | |
18 | iftrue 4125 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) | |
19 | 18 | ad2antrl 764 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
20 | csbeq1a 3575 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) | |
21 | 20 | ad2antll 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
22 | 19, 21 | eqtrd 2685 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
23 | eqidd 2652 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁) | |
24 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
25 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝑤 ∈ 𝑁) | |
26 | nfv 1883 | . . . . . . 7 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ 𝑁) | |
27 | nfcsb1v 3582 | . . . . . . . 8 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 | |
28 | 27 | nfel1 2808 | . . . . . . 7 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾 |
29 | 26, 28 | nfim 1865 | . . . . . 6 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
30 | eleq1 2718 | . . . . . . . 8 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁)) | |
31 | 30 | anbi2d 740 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ 𝑁) ↔ (𝜑 ∧ 𝑤 ∈ 𝑁))) |
32 | 20 | eleq1d 2715 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑋 ∈ 𝐾 ↔ ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾)) |
33 | 31, 32 | imbi12d 333 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) ↔ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾))) |
34 | 29, 33, 8 | chvar 2298 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
35 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑤 ∈ 𝑁) | |
36 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑗𝐼 | |
37 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑖𝑤 | |
38 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑖⦋𝑤 / 𝑗⦌𝑋 | |
39 | 17, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27 | ovmpt2dxf 6828 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
40 | iftrue 4125 | . . . . . . . . 9 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋) | |
41 | 40 | ifeq2d 4138 | . . . . . . . 8 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋)) |
42 | ifid 4158 | . . . . . . . 8 ⊢ if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋 | |
43 | 41, 42 | syl6eq 2701 | . . . . . . 7 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
44 | 43 | ad2antrl 764 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
45 | 20 | ad2antll 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
46 | 44, 45 | eqtrd 2685 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
47 | eqidd 2652 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁) | |
48 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
49 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑗𝐽 | |
50 | 17, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27 | ovmpt2dxf 6828 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
51 | 39, 50 | eqtr4d 2688 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
52 | 51 | ralrimiva 2995 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑁 (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
53 | 1, 2, 3, 4, 5, 13, 14, 15, 16, 52 | mdetralt 20462 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ⦋csb 3566 ifcif 4119 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 Fincfn 7997 Basecbs 15904 0gc0g 16147 CRingccrg 18594 Mat cmat 20261 maDet cmdat 20438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-xor 1505 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-xnn0 11402 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-word 13331 df-lsw 13332 df-concat 13333 df-s1 13334 df-substr 13335 df-splice 13336 df-reverse 13337 df-s2 13639 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-mulg 17588 df-subg 17638 df-ghm 17705 df-gim 17748 df-cntz 17796 df-oppg 17822 df-symg 17844 df-pmtr 17908 df-psgn 17957 df-evpm 17958 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-rnghom 18763 df-drng 18797 df-subrg 18826 df-sra 19220 df-rgmod 19221 df-cnfld 19795 df-zring 19867 df-zrh 19900 df-dsmm 20124 df-frlm 20139 df-mat 20262 df-mdet 20439 |
This theorem is referenced by: mdetero 20464 madurid 20498 |
Copyright terms: Public domain | W3C validator |